华北太行山前平原农田生态系统中氮、磷、钾 循环与平衡研究*

张玉铭** 胡春胜 毛任钊 董文旭

(中国科学院石家庄农业现代化研究所,石家庄 050021)

【摘要】 以栾城县为例,分析了华北太行山前平原农田生态系统 N、P、K 三要素养分循环与平衡特征及其 变化趋势,评价了农田养分平衡状况,提出了合理施肥对策.结果表明,1985~2000 年栾城县农田养分平 衡中 N素经历了由轻微赤字向盈余的转变过程,由 1985 年的 1.4% 赤字转变到 2000 年盈余 48.6%;K 由极度亏缺(82%赤字),逐渐向平衡发展,到 2000 年已有 4.6%的轻微盈余,但仍有大量田块是赤字平 衡,P则始终有大量盈余.目前农田养分收支存在一定程度的 N、P 投入过量,K 投入不足的问题.以土壤 肥力状况和作物种植结构而论,栾城县应采取'稳氮、控磷、增钾'的施肥对策,避免过多的盈余化肥氮进入 环境,同时应继续推广秸秆还田技术,提高养分循环再利用效率.

关键词 农田生态系统 土壤养分平衡 循环再利用 文章编号 1001-9332(2003)11-1863-05 中图分类号 S158 文献标识码 A

Nitrogen , phosphorus and potassium cycling and balance in farmland ecosystem at the piedmont of Taihang. ZHANG Yuming , HU Chunsheng , MAO Renzhao , DONG Wenxu (*Shijiazhuang Institute of Agricultural Modernization , Chinese Academy of Sciences , Shijiazhuang* 050021 , *China*). -*Chin* . J . Appl . Ecol . ,2003 , 14(11) :1863~1867.

The feature and change trend of N, P and K cycling and balance in farmland ecosystem of Luancheng County at the piedmont of Taihang were analyzed . The status of nutrient balance was appraised , and the rational way to apply fertilizer was put forward. The result indicated that N balance went through a process from slight deficit to surplus during $1985 \sim 2000$, changing from deficit of 1.4% in 1985 to surplus of 48.6% in 2000. Potassium balance changed gradually from serious deficit of 82% to slight surplus of 4.6%, but was still deficit in many fields. P budget was surplus ever since 1985. Comparing with the output of nutrients, the inputs of N and P were excessive, but the K input was short. Under the current soil fertility and crop planting structure, the countermeasure to control the application amount of N and P and to increase the application rate of K should be carried out, so that there would be no significant surplus N emitting or leaching from soil into environment. The technique to return crop straw into farmland should be extended to increase the nutrient recycling rate.

Key words Farmland ecosystem , Soil nutrient balance , Cycling and reutilization.

1 引 言

养分循环是农田生态系统最基本的功能之一. 农田三大养分要素 N、P、K 的循环与平衡是区域农 田生产力状况的反映.自 20 世纪 80 年代以来我国 逐渐重视了解农田养分循环与平衡状况和土壤养分 肥力变化的趋势和特点,加强人为调控养分循环与 平衡方面的研究,使循环向有利于人类需要的方向 发展^[5 8~10].目前,国内外的有关文献中,大多只注 意对养分平衡的收支计算,却较少注意对这些平衡 盈亏的评价.由于养分平衡出现赤字或盈余并不一 定不合理,达到 100%平衡(平衡为±0)也不一定就 是理想目标,所以,对某一区域农田生态系统养分循 环和平衡做出正确评价尤为重要^[6].

华北风存函带平原是我国化肥施用量大的粮食

高产区之一,但施肥中存在着养分投入过量及结构 不合理等问题.当前施氮水平已超过每年 330 kg· hm⁻²,磷肥用量也高达 125 kg·hm⁻²,而钾肥投入 严重不足.本文旨在以栾城县为例,通过分析农田养 分循环与平衡的基本特点(参数),按照鲁如坤等⁶¹ 提出的农田养分平衡的评价方法和原则对华北太行 山前平原农田生态系统养分循环与平衡状况进行评 价,以期为农田养分循环提供比较理想的施肥模式. 本研究对于同类型区处理好合理施肥与维护土壤环 境的关系,建立高产稳产的农田生态系统,发展持续 农业具有重要的现实意义.

^{*}中国科学院知识创新工程资助项目(KZCX2-413-4,KZCX2-404, KZCX2-405).

^{* *} 通讯联系人

²⁰⁰³⁻⁰¹⁻²³ 收稿, 2003-04-16 接受.

2 研究地区与研究方法

2.1 研究地区概况

栾城县位于华北太行山山前平原 属暖温带半湿润半干 旱季风气候区 ,年平均气温 12.4℃ ,冬季寒冷干燥 ,夏季炎 热多雨 ,多年平均降水量为 474.9mm ,年蒸发量 1697mm 左 右 ,≥10℃积温 4232℃ ,无霜期 200 d 左右.

2.2 研究方法

2.2.1 农田养分收入参数与收入量计算 农田养分收入主要包括化肥、有机肥、生物固氮、降水和灌溉所带入农田的养分.化肥投入量参照栾城县国民经济统计资料,以化肥投入总量折算成纯养分量计入.有机肥主要计算秸秆还田、畜禽粪尿所带入农田的养分量.秸秆产量根据作物产量与草籽比估算.秸秆还田量:1985 年不还田,1990 年小麦秸秆 20%还田,玉米 40%还田 2000 年小麦秸秆全部还田,玉米 90%还田 秸秆还田所带入农田养分量根据秸秆养分浓度(表1)与还田量计算而得.畜禽粪尿带入农田的养分根据栾城县国民经济统计资料畜禽饲养量、每只(头)畜禽粪尿年排放量和粪尿养分含量估算,计算方法参照文献^{78]}.栾城县豆科作物以大豆、花生为主,共生固氮量根据大豆、花生实际种植面积与单位面积固氮量计算,按固氮 195 kg·hm⁻²计^[5].降水、灌溉所带入土壤中的养分量根据降水量、灌溉量及其相应养分含量计算.

2.2.2 农田养分支出参数与支出量计算 农田养分支出主 要包括地上部分作物收获养分量和养分损失量.作物收获养 分量根据各种作物的实际总收获量和氮磷钾养分含量计算, 小麦、玉米氮磷钾含量采用多年来多点采样所测结果平均值 (表1),其它作物养分含量参照文献^[7].

表1 小麦、玉米氮磷钾含量

Table 1 Concentration of N , P and K in wheat and maize

作物 Crop	N(%)	F(%)	K(%)
小麦籽粒 Wheat grain	2.04	0.45	0.32
小麦秸秆 Wheat straw	0.65	0.08	0.75
玉米籽粒 Maize grain	1.20	0.37	0.3
玉米秸秆 Maize straw	0.92	0.15	0.6

田间养分损失量主要包括氨挥发、反硝化以及深层土壤 氮素淋溶所损失的养分.通过在当地常规农业管理措施下多 年来对养分损失通量的测定,推算单位农田面积年损失量及 肥料损失率(表2),据此,以全县肥料施用量估算养分损失 量.通量测定方法分别为:反硝化-乙炔抑制原状土柱培育 法^{1,3]} 氮挥发-微气象学大面积法;氮素渗漏-基于水量平衡 的多孔杯法.氮素损失通量及肥料损失率与在相邻地区所测 结果极为接近^{2,4]}.

2.2.3 土壤养分调查与测试方法 1979 年养分含量采用第 二次土壤普查结果.2000 年玉米收获后小麦播种前,结合第 二次土壤普查原采样点位,在全县以1km为步长布点,共采 集278 个耕层(20cm)土壤样品,分析有机质、全氮、碱解氮、 速效磷和速效钾含量,有机质测定采用重铬酸钾容量法,全 氮采用半微量钒色光,碱解氮采用碱解扩散法,速效磷采用

表 2 栾城县农田生态系统氮素损失

Table 2 N losses from agro-ecosystem in Luancheng County

项目 Item	NH3 挥发 Ammonia volatilization	表观反硝化 Denitrification	表观淋失量 ^b Leaching loss	
肥料损失率 Percentage to	15.1	1.07^{a}	8.9	
applied fertilizer(%)				

注 a)由施肥区与无肥区反硝化损失量差值计算而得 见文献 ¹¹¹ b)指淋溶出 180cm 土层的硝态氮量.

碳酸氢钠浸提—钼锑抗比色法 速效钾采用醋酸铵浸提原子 吸收法.

3 结果与讨论

3.1 农田生态系统养分收支与平衡

3.1.1 栾城县农田养分收入 栾城县农田养分收入 来源以化肥为主,其次是畜禽粪肥和还田秸秆等有 机肥源 通过灌溉、降水、共生固氮等途径进入农田 的养分量所占比例极小.从1985~2000年化学肥料 的施用量逐年增长,2000年全县投入N、P、K分别 10278、3862 和 359t,与 1985 年相比,N 肥增施了 76.6% P 增加 9.8% K 增加 8.5 倍(表 3). 化学氮 磷肥使用在养分输入中占有举足轻重的地位 分别 相当于各项总输入量的 67.4%~79.2% 和 78.3% ~91.6%,但应看到,栾城县氮、磷、钾养分输入结构 严重失调 化学钾肥仅占钾素总输入量的 0.5% ~ 10.5%.虽然钾肥的施用总量已数倍增加,但钾肥仍 未受到普遍重视 处于较低水平 在人增地减的情况 下 化肥在粮食生产中的作用越来越重要 目前粮食 产量的 30% 是依靠当季化肥投入形成的 ,今后化肥 的作用有可能增加到 40%~50%[9].

表 3 1985~2000 年栾城县农田生态系统养分收入

Table 3 Nutrient input of farmland ecosystem in Luancheng County in $1990\!\sim\!2000(t)$

养分收入		1985			1990			2000	
Nutrient input	Ν	Р	K	Ν	Р	Κ	Ν	Р	K
化肥 Fertilizer	5820	3517	42	7928	4394	5	10278	3862	359
粪肥 Manure	467	237	429	572	293	528	1408	735	1178
秸秆还田 Returned straw	0	0	0	710	108	559	2276	335	1886
灌溉水 Irrigation	572			570			560		
雨水 Precipitation	97			97			95		
共生固氮 Symbiotic	238			134			641		
nitrogen fixation									
合计 Total	7194	3754	471	10011	4795	1092	15258	4932	3423

畜禽排泄物和作物秸秆是有机肥主要来源.近 年来,栾城县养殖业迅速发展,为农业生产提供了大 量粪肥资源,2000年投入农田量仅以总量的四分之 一计(多数粪肥用于菜地和果园),仍比 1985 和 1990年有明显提高,N、P、K养分投入总量增长1~ 2倍.秸秆直接还田提高了养分循环利用效率.2000 年通过秸秆还田返还农田养分总量为 4497t,比 1990 年增加 226%. 作物 70% ~80%的钾集中在 茎、叶中,所以由秸秆还田途径返还土壤的钾占总输 入量的 51% ~55%, 对土壤钾库的补给和平衡具有 重要作用.

营养物质的大量输入,对促进农田生态系统内 部的物质循环、维持土壤肥力以及提高农田生产力 水平具有重要作用.2000年养分总输入比1985年 增加1倍以上,在养分输入中化肥所占的比例最大, 1985年为82%,1990年为78%,2000年为61%;其 次是粪肥和秸秆还田,按照年代顺序,粪肥所占的比 例依次为10%、9%、14%;秸秆还田所占的比例依 次为0.9%、19%.随着生态经济的发展,农田养分 来源结构不断发生变化,有机肥(粪肥、秸秆)所占比 例越来越大,由1985年的10%扩大到2000年的 33%,逐渐向有机无机相结合的方向发展.

3.1.2 栾城县农田养分支出 依据田间试验所获 得的养分循环参数(包括肥料损失参数、作物产量及 其养分含量等),估算全县养分总支出见表 4.作物 养分支出量以作物总产量与作物养分浓度相乘获 得,养分损失以肥料损失率与肥料施用量为基础获 得,栾城县粮食作物(主要是小麦、玉米)养分移出量 最大,占养分总支出量的 80%~83%,其中粮食作 物移出氮量占氮素总支出的 71%~76%.氮肥损失 也是一重要支出项,占氮素总支出量的 20%~

表 5 栾城县不同发展时期农田养分循环变化

Table 5 Formland nutrient cycling during different de

24%.从N、P、K养分比较来看,以N支出量最大, 占总支出量的67%;其次是K,占22%;P占11%.

随着养分投入的逐年增加,作物产量不断提高, 农田养分消耗也随之增加,2000年养分总支出比 1985年增加36.9%,比1990年增加13.7%;各项 养分支出比1985年增加N50.7%,P39.0%,K 25.2%;比1990年增加N15.3%,P14.0%,K 9.0%.

表 4 1985~2000 年栾城县农田生态系统养分支出

Table 4 Nutrient output of farmland ecosystem in Luancheng County in $1985\!\sim\!2000($ t)

养分支出		1985			1990			2000	
Nutrient output	Ν	Р	K	Ν	Р	K	Ν	Р	K
粮食作物 Cereal crop	5509	1146	2482	6790	1437	2971	7336	1618	3174
其它作物 Non-cereal crop	357	42	130	151	12	30	421	34	98
氮肥损失 N loss	1430			1964			2510		
合计 Total	7296	1188	2612	8905	1449	3001	10267	1652	3272

3.1.3 农田养分循环与平衡特征 从表 5 可知, 1985 年养分输入输出量小,系统内循环量小,养分 循环率比较低,农田养分内循环靠外部投入维持.从 1990~2000 年,由于秸秆还田措施的不断实施,有 机养分归还量不断增加,输出外部的 NPK 养分总 量不断减少,内循环量增大,内循环率上升,2000 年 N的内循环率为 22.2%,NPK 养分总循环率为 51.5%,系统养分循环属半封闭式.

栾城县农田养分平衡变化情况见表 6, 自 1985

项目	1	985	1	990	2000		
Items	N 循环 N cycling	NPK 总循环 NPK cycling	N 循环 N cycling	NPK 总循环 NPK cycling	N 循环 N cycling	NPK 总循环 NPK cycling	
总输入量 Total inpu (kg·hm ⁻²)	229	363	320	507	495	766	
外部输入量 External input(kg·hm ⁻²)	185	298	253	393	334	470	
总支出量 Total output(kg hm ⁻²)	232	353	284	426	333	493	
输出外部量 Output from farmland (kg·hm ⁻²)	217	317	243	338	259	239	
参与循环量 Internal cycling kg·hm ⁻²)	15	36	41	88	74	254	
循环率 * Cycling rate(%)	6.4	10.2	14.4	20.7	22.2	51.5	

* 循环率为参与循环量占总支出量的百分比.

表 6 栾城县不同发展时期农田养分平衡

 Table 6 Balance of farmland nutrient during different periods in Luancheng County

项目		1985			1990			2000	
Items	Ν	Р	K	Ν	Р	Κ	Ν	Р	K
总输入 Total input(t)	7194	3754	471	10011	4795	1092	15258	4932	3423
总支出 Total output(t)	7296	1188	2612	8905	1449	3001	10267	1652	3272
平衡 Balance(%)	-1.4	216.0	-82.0	12.4	230.9	-63.6	48.6	198.5	4.6

年来,农田养分平衡中P始终有大量盈余;氮由 1985年的轻微亏缺逐渐转向盈余,到2000年已盈 余48.6%.1990年前K收支为赤字,1990年以后, 随着秸秆还田措施的实施以及粪肥施用量不断增 加 K收支逐渐转荷持衡,并略有盈余,到2000年赢

余4.6%.

3.2 农田生态系统养分平衡评价

3.2.1 农田养分平衡对土壤养分变化趋势的影响

农田养分的循环与收支平衡直接影响着土壤养分 库的消长.自1979年以来,由于氮磷的总投入大于 总支出,土壤库氮素与磷素处于盈余状态,土壤氮磷 含量呈上升趋势(表7).但磷的盈余与土壤速效磷 含量增加的幅度不十分吻合,这可能与磷肥施入土 壤后易被土壤吸持而进入缓效磷库有关.1990年以 前大田未盲目施K,节约了经济投入.随着粮食产量 逐年提高,养分消耗水平不断增加,农田钾素平衡处 于亏缺状态,土壤速效钾含量均呈下降趋势,从 1979~2000年相对下降了19.4%,年递减率为 0.9%.近年来虽然钾肥的施用有了明显提高,但仍 处于较低水平.如果钾素投入过少,势必依靠耗竭土 壤钾库来维持相应的生产力,长此以往,土壤钾素亏 缺,土壤自身调节功能减弱,在一定程度上会限制农 田生产力的继续提高,所以应该重视适量化学钾肥 的施用.

表 7 栾城县农田土壤养分变化

Table 7	Uariation	of	farmland	soil	nutrient	in	Luancheng	County
---------	-----------	----	----------	------	----------	----	-----------	--------

				0	
年份	有机质	全氮	碱解氮	速效磷	速效钾
Year	O. M	Total N	Alkalized N		
	(g \cdot kg $^{-1}$)	(g \cdot kg ⁻¹)	$(mg \cdot kg^{-1})$	$(\text{mg} \cdot \text{kg}^{-1})$	(mg·kg ^{-1})
1978	11.4 ± 2.9	0.87 ± 0.12	56.7±13.2	17.6 ± 9.0	140.6 ± 27.6
2000	17.4 ± 2.4	1.11 ± 0.14	79.8 ± 9.9	20.9 ± 13.2	113.3 ± 32.4
增减	6.0	0.24	23.1	3.3	-27.3
Change					

3.2.2 农田养分平衡评价 参照鲁如坤等⁶¹农田 养分平衡的评价方法,对栾城县及中国科学院栾城 生态农业试验站周边区域农田养分平衡作一评价. 根据多点进行的试验结果,了解土壤养分的自然供 给能力,在此用养分的增产率表示(表8).可以看 出,氮、磷、钾肥在小麦、玉米上的增产效果均不明 显,尤其是玉米季施用氮肥、磷肥并不增产.为了从 不同层位上研究栾城县、试验站区及周围区域农田 养分平衡,我们在站区周围7个村中选择了有代表 性的农户,了解其投入与产出情况.计算其养分平衡 率后发现,所有农户氮、磷平衡均有盈余,有60%以 上农户氮素实际平衡比作物养分消耗量高出1.5 倍,这显然是不合理的.有近50%农户开始注重钾 肥的施用,在钾的平衡中开始出现盈余.

表 8 养分增产率(相对值)

Table 8 Rate of increased production (relative value) (%)								
作物 Crop	Ν	Р	K					
小麦 Wheat	1.18	1.09	1.01					
玉米 Maize	1.00	0.96*	1.03					
全年 Total	1.07	1.02	1.02					
	1							

* <1 的数字 按 1.0 计算.

通过对实际养分平衡盈亏率与允许养分平衡盈 亏率进行比较,可了解农田养分平衡状况,以便对其 做出正确评价,为农田管理措施调整提供依据.利用 表8结果计算出农田允许的养分平衡盈亏率,列出 站区、站区周围典型区域农户田块以及栾城县的实 际养分平衡盈亏率(表9).所谓养分允许平衡盈亏 率是指在当地条件下养分平衡的计算所得结果,虽 有亏缺或盈余也是允许的,这意味着养分亏缺时并 不会影响在物类型,盈余时也不会造成养分浪费.计 算公式为:

$$B\% = [(\frac{1 - SCI}{E} - 1)] \times 100$$
 (1)

式中 ,B%为某养分允许平衡盈亏率 ;E 为某养分肥 料利用率 ,用相对值表示. SCI 为土壤养分贡献率 , 相当于某养分增产率的倒数.

栾城站区及周围农田目前氮、磷、钾肥料增产率 均低于 10%(表 8).就总体而言,在目前土壤肥力状 况下,即使在 NPK 都有一定赤字的情况下,也不会 影响作物产量.根据计算结果,氮素平衡允许有 81.4%赤字,磷、钾分别允许有 95%和 93.3%的赤 字,但实际上氮磷平衡在不同程度上都高出作物养 分消耗量,这显然是不合理的(表 9).比较栾城县、 站区及周围区域农田养分实际平衡状况,站区养分 平衡相对比较合理,而县域范围内和典型农户氮、磷 投入都存在过量问题.根据初步计算,站区在氮肥用 量降低 20%、磷肥用量降低 30%情况下,不会影响 作物产量,并可实现农田养分收支平衡.总的看来, 无论从何种层面考虑,华北太行山前平原农田生态 系统普遍存在氮磷投入过量,钾投入不足的问题.

从养分平衡允许盈亏率来看,本区域氮、磷、钾 收支中允许有某些赤字发生.但必须注意,氮、磷、钾 肥在该区域仍然存在增产趋势(表8),说明部分养 分供应来源于土壤,但土壤已无力承受较大的平衡 赤字.建议在施肥时应保持养分的基本平衡,即无赤 字平衡,以防止土壤肥力下降.尤其土壤钾素已处于 由不缺到缺乏的转变时期,因而除了提倡秸秆还田 保持农田土壤钾素平衡外,还应高度重视钾肥的施 用.

表 9 2000 年农田养分平衡盈亏率

Table 9 Nutrient balance rate in	farmland in	2000 (%)
----------------------------------	-------------	--------	----

项目 Items	Ν	Р	Κ
农户实际平衡率 Actual balance rate in +	$+68 \sim +259$	+11~+216	$-100 \sim +78$
farmland of peasant household			
站区实际平衡率 Actual balance rate in	+20.4	+31.0	- 100
farmland of Experimental Station			
栾城县实际平衡率 Actual balance	+48.6	+198.5	+4.6
rate in farmland of Luancheng County			
允许平衡率 Allowable balance rate	-81.4	-95.0	-93.3

4 结 论

4.1 化学氮磷肥是养分输入中的重要内容 秸秆还 田是 K 的重要补给源.15 年来,栾城县农田养分循 环与平衡中,N 经历了由轻微亏缺向大量盈余的转 化过程 P 则始终有大量盈余,K 由极度亏缺逐渐向 平衡发展,但仍有大量田块是赤字平衡.土壤养分库 中氮磷含量不断上升,钾含量逐渐下降.

4.2 随着农业管理措施的不断改善,农田养分的循环模式不断发生改变.20世纪80年代,农田养分循环率较低,系统内养分循环主要靠外部投入来维持.进入90年代,由于秸秆还田措施的不断实施,输出外部的NPK养分总量不断减少,内循环量增大,内循环率上升,系统养分循环属半封闭式.

4.3 在目前土壤肥力状况和作物种植结构下,即使 在氮、磷、钾都有一定赤字的情况下也不会明显影响 作物产量.氮、磷、钾收支中允许出现某些赤字,在施 肥时应保持养分的基本平衡,以防止土壤肥力下降. 应提倡"稳氮、控磷、增钾"策略,推广科学施肥技术, 提高施肥效果.坚持施用有机肥料与秸秆还田,提高 农田养分再循环率,扩大和平衡土壤速效养分库.

参考文献

- 1 Bouwman AF. 1990. Exchange of greenhouse gases between terrestrial ecosystem and the atmosphere. In Bouman AF ed. Soil and the Greenhouse Effect. Chichester ;John Wiley & Sons. $60 \sim 127$
- 2 Cai GX Chen DL, Ding H, et al. 2002. Nitrogen losses from fertilizers applied to maize ,wheat and rice in the North China Plain. Nutr Cycling Agroecosyst 63:187~195
- 3 Fan X-H(范晓晖), Zhu Z-L(朱兆良). 2002. Nitrification and dinitrification in upland soils. Chin J Soil Sci(土壤通报), 33(5):

385 - 391 (in Chinese)

- 4 Li Y-X(李亚星). 1993. Study on the Dynamic of Denitrification in Wheat Field. Beijing: Beijing Agricultural University. (in Chinese)
- 5 Lu R-K(鲁如坤), Liu H-X(刘鸿翔), Wen D-Z(闻大中), et al. 1996. Study on nutrient cycling and balance in agro-ecosystem representative region of China II. Parameter of nutrient 's input to farmland. Chin J Soil Sci(土壤通报), 27(4):151~154 (in Chinese)
- 6 Lu R-K(鲁如坤),Liu H-X(刘鸿翔),Wen D-X(闻大中),*et al*. 1996. Study on nutrient cycling and balance in agro-ecosystem representative region of China IV. Method and principle of appraising nutrient balance in farmland. *Chin J Soil Sci*(土壤通报), 27(6): 241~242(in Chinese)
- 7 National Extension Center of Agricultural Technique(全国农业技术推广服务中心). 1999. Resources of Organic Fertilizer. Beijing:China Agricultural Press. 26~37(in Chinese)
- 8 Shen S-M(沈善敏). 1998. Soil Fertility of China. Beijing: China Agricultural Press. 71~88 (in Chinese)
- 9 Wang Y(王 英). 2002. Preliminary study on nutrient 's cycling and balance in farmland soil of Heilongjiang Province. *Chin J Soil Sci*(土壤通报).33(4).268~271 (in Chinese)
- 10 Yu W-T(字万太), Zhang L(张 璐), Yin X-Y(殷秀岩), et al. 2002. Effect of different fertilization system on soil nutrient budget. Chin J Appl Ecol(应用生态学报), 13(12):1571~1574 (in Chinese)
- 11 Zhang Y-M(张玉铭) Zeng J-H(曾江海) Dong W-X(董文旭) et al. 2002. Nitrogen loss by nitrification-denitrification in wheatmaize rotation system. Acta Pedol Sin(土壤学报),39(supp.): 245~250(in Chinese)

作者简介 张玉铭 ,女 ,1964 年出生 ,副研究员 ,主要从事农 田生态系统养分循环及其环境效应方面的研究 ,发表论文多 篇. E-mail :yuming-zhang@hotmail.com

