2004年2月 Feb. 2004

钕掺杂提高 TiO₂ 光催化活性的机制[,]

侯梅芳¹,**李芳柏^{2*}**,**李瑞丰³**,**万洪富²**,**周国逸¹**,谢克昌³ (1. 中国科学院华南植物园,广东广州 510650;2. 广东省农业环境综合治理实验室,广东省生态环境与土 壤研究所,广东广州 510650;3. 太原理工大学一碳化学与化工国家重点实验室,山西 太原 030024)

摘要:采用 X 射线衍射(XRD), B E T 吸附, X 射线光电子能谱(XPS)表征了溶胶凝胶法制备的 Nd 掺杂 TiO₂ 光催化剂的晶体结构、表面电 子结构与化学组成。以甲基橙为有机底物,测试 Nd 掺杂对光催化剂吸附性能和光催化活性的影响。结果表明, Nd 掺杂可阻碍 TiO₂ 的晶相 转变,减小光催化剂的晶粒尺寸,比表面积增大。Nd 掺杂提高光催化剂表面三价钛(Ti)的含量及其对甲基橙的吸附能力是其提高 TiO₂ 光 催化降解甲基橙活性的主要原因。Nd 掺杂量为 1.2%时,光催化剂活性最高。

关键词:催化化学;光催化;二氧化钛;钕;甲基橙;稀土
中图分类号:O643.361;O644.1
文献标识码:A
文章编号:1000 - 4343(2004)01 - 0075 - 06

纳米 TiO₂ 在太阳能转化、光催化氧化、电子 器件等许多方面有着广阔的应用前景,其中锐钛 矿相 TiO₂ 以其较好的光催化活性在有机污染治理 等方面备受重视^[1~3]。在纳米 TiO₂ 应用过程中, 其物理化学性质如晶相、结晶程度、比表面积、对 反应底物的吸附能力、载流子分离能力以及光吸 收能力等在很大程度上影响着其光催化氧化分解 污染物的能力。对 TiO2 进行掺杂改性可改善其光 催化性能,金属离子掺杂是较为常用的方法^[4~8]。 有文献报道稀土掺杂可提高 TiO₂ 的比表面积, 增 强其对有机物的吸附能力,从而提高光催化活 性^[9~10]。尤其值得注意的是,大量研究结果表明 TiO_2 的光催化活性与其表面性质密切相关,利用 金属离子掺杂可以改善 TiO2 表面态状况、抑制光 生电子和空穴的复合以及增加表面活性基团、因 此详细研究金属离子掺杂对 TiO2 表面性质和光催 化活性的影响,有助于深入了解光催化反应机制 和指导高活性光催化剂的制备。X 射线光电子能 谱(XPS)可提供丰富的表面信息,因而在本文中用 来表征稀土离子掺杂对 TiO_2 表面性质的影响,考 察掺杂改性引起光催化性能变化的机制。当前有 关钕掺杂 TiO₂ 的研究报道较少。本文采用溶胶凝 胶法制备 Nd 掺杂的 TiO₂, 通过研究 Nd 掺杂对 TiO₂的物理化学性质、表面性质以及吸附性能等 方面来探讨其改善TiO₂光催化性能的机制。

1 实 验

1.1 Nd 掺杂 TiO₂ 纳米材料的制备

17 ml 的钛酸丁酯与 40 ml 的无水乙醇混匀为 溶液 A, 置于分液漏斗中; 将 1 ml 的 0.1 mol L⁻¹ 的 Nd (NO₃)₃ 溶液加入到 10 ml 冰醋酸、40 ml 无 水乙醇与 9 ml 双蒸水的混合液中,充分搅拌 30 min 后得溶液 B; 边搅拌边将溶液 A 逐滴加入到溶 液 B 中,滴加完毕后继续搅拌 1 h 以形成均匀透明 的掺杂 Nd 离子的 TiO₂ 溶胶, 然后室温放置陈化 2 d 以形成凝胶; 该凝胶于 100 下烘干,碾细得 粉末; 将粉末于马弗炉中 500 热处理 2 h 得到化 学掺杂 Nd 为 0.2%的 TiO₂ 纳米粉末材料,记为 0.2% Nd³⁺/TiO₂; 采用相同的方法制备 0.7% Nd³⁺/TiO₂, 1.2% Nd³⁺/TiO₂ 和 2.0% Nd³⁺/ TiO₂; 纯 TiO₂ 的制备同上,只是未加入 Nd 离子。 所用 Nd 掺杂均以原子浓度 (Nd/Ti)计算。实验用 化学品均为分析纯试剂,溶液的配制使用双蒸水。

1.2 甲基橙吸附实验

室温(25 ±1) 下,将 0.2 g Nd 掺杂 TiO₂ 纳 米粉末加入到 200 ml 浓度为 12 mg L⁻¹的甲基橙

* 收稿日期: 2003 - 04 - 14; 修订日期: 2003 - 06 - 16

基金项目:国家自然科学基金(010873,20203007);广东省自然科学基金(010151);2003 年度 C1 化学与化工国家重点实验室开放基 金资助项目

作者简介:侯梅芳(1976-),女,山西临汾人,博士研究生;研究领域:环境催化

^{*} 通讯联系人 (E-mail: cefbli @hotmail.com)

溶液中,避光环境中磁力搅拌 10 h 以期达到吸附 脱附平衡,取试液 20 ml 经 100 r ·min⁻¹离心分离 30 min,然后经 0.45 µm 滤膜过滤得到清液,用 TU-1800 PC 紫外可见分光光度计测定被处理液的 甲基橙残留量,进而换算甲基橙吸附量。

1.3 光催化反应器和光源

室温条件下,圆筒形光学玻璃光催化反应器 的中心竖直放置 8 W 紫外灯管,反应器外套管采 用回流水来冷却反应溶液。

1.4 甲基橙的光催化降解实验

室温(25 ±1) 下,将 0.2 g Nd 掺杂 TiO₂ 纳 米粉末加入到 200 ml 浓度为 12 mg L⁻¹的甲基橙 溶液中,避光环境中磁力搅拌 1 h 以期达到吸附脱 附平衡,然后开始紫外灯照射,每隔一定时间进行 取样,取试液 20 ml 经 100 r ·min⁻¹离心分离 30 min,然后经 0.45 µm 滤膜过滤得到清液,用 TU-1800 PC 紫外可见分光光度计测定被处理液的甲 基橙残留量,进而换算甲基橙吸附量。

1.5 样品的表征

日本理学 D/MAX 2500 型 X 射线衍射分析 (XRD)表征样品的晶相组成, Cu 石墨单色器,加 速电压为 40 kV,发射电流 100 mA, 为 0.15418 nm;平均晶粒直径以及晶格参数 *a* 和 *c* 采用 Scherrer 方程计算。

$$D = \frac{k}{\cos} \tag{1}$$

$$d = \frac{1}{2\sin^2}, \ \frac{l}{d^2} = \frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2}$$
(2)

式(1)中 *D* 为平均晶粒大小, *k* 为常数 0.89, 为 半峰宽, 为衍射角;式(2)中 *d* 为晶面间距, *h*, *k*, *l* 为二氧化钛晶粒各衍射方向上的指数, *a*, *c* 为晶胞参数。

XPS 测试采用 PHI 量子 ESCA 型光电子能谱 (XPS) 仪器测试分析, 激发源为 Mg K, 能量为 1253.6 eV, 16 mA ×12.5 kV; 分析室真空优于 1 ×10⁻⁸ N·m⁻²; 以沾污碳 C1s284.6 eV 作能量参 考, 消除物理因素如表面荷电效应等引起的物理 位移; 采用 Multipak 6.0 A 分析数据。利用美国 CE Sorptomatic 1990, 采用 BET 法 77 K 下氮气吸 附来测定材料的比表面积。

2 结果与讨论

2.1 XRD 表征

如图 1 所示, X 射线衍射结果表明实验所得纯 TiO₂ 与 Nd 掺杂 TiO₂ 为锐钛矿相结构, 未出现金 红石相。掺杂 Nd 使 TiO₂ 锐钛矿晶相 101 峰相对 强度明显减少,且随掺杂量的增加,(101)峰强度 减少增大,这说明溶胶凝胶法掺杂 Nd 可阻碍 TiO₂ 的晶相转移,提高催化剂的热稳定性。根据 101 峰的半峰宽以及 Scherrer 方程计算, Nd 掺杂 可以抑制晶粒尺寸增大,对其晶胞参数 a 和晶胞 参数 c 的影响不明显(表 1);预示着可能制备出晶 格完整晶粒较小的量子化 TiO₂ 半导体粒子。

2.2 BET 分析

表 1 为 Nd 掺杂 TiO₂ 的一些物理化学性质。 溶胶凝胶法掺杂 Nd 使 TiO₂ 纳米粒子的比表面积 明显增大; 0.2 % Nd³⁺/TiO₂外,其他样品的比表 面积是纯 TiO₂ 的两倍多;预示着可能制备出高比 表面超细催化剂。

2.3 表面 XPS 分析

对各光催化剂表面进行 X 射线光电子能谱的

图 1 光催化剂的 X 射线衍射图谱

(1) \ddagger TiO₂; (2) 0.2% Nd³⁺/TiO₂; (3) 0.7% Nd³⁺/TiO₂; (4) 1.2% Nd³⁺/TiO₂; (5) 2.0% Nd³⁺/TiO₂

表 1 Nd 掺杂 TiO₂ 的一些物理化学性质

掺杂浓度 Nd/ Ti/	0	0.2%	0.7%	1.2.0/	2.0.%
$10^{-2} (mol \cdot mol^{-1})$	0	0.2 %	0.7%	1.2 %	2.0 %
晶相	A *	А	А	А	А
比表面积/ (m² g‐1)	43.29	73.38	96.26	92.37	95.97
平均粒径/nm	32.9	25.8	19.8	19.2	17.8
晶胞参数 a/nm	3.780	3.783	3.783	3.780	3.780
晶胞参数 c/nm	9.502	9.498	9.493	9.498	9.493
101 峰相对强度/cps	591	363	381	266	338

* A = 锐钛矿相

全谱分析,如图 2 所示纯 TiO₂ 表面主要有 Ti,O 及 C 3 种元素, 而 Nd 掺杂 TiO₂ 光催化剂表面除前面 3 种 元素之外还有少量 Nd 元素的存在。其中, Ti 和 O 元 素主要来源于起始溶胶凝胶合成反应液; C 元素则可 能来自 X 射线光电子能谱仪本身的油污染和溶胶凝 胶工艺中使用的有机前驱物在热处理过程中未完全燃 烧而残余的 C; Nd 掺杂 TiO₂ 表面少量 Nd 的存在则 因溶胶凝胶掺杂离子溶液而引入。

各光催化剂表面 Ti2p 高分辨扫描谱中 Ti2p 峰 均可被分解成几个小峰,分别对应于 Ti 的不同氧化 态,每个小峰均由 Ti2p_{1/2}和 Ti2p_{3/2}两肩峰组成,两 峰的面积比约为 0.5,两峰的结合能之差 $E_b = E_b$ (Ti2p_{1/2}) - E_b (Ti2p_{3/2})接近 5.7 eV。Ti2p_{3/2}峰的拟 合结果如表 2 所示。各光催化剂表面 Ti 价态主要是 Ti(),但也有 Ti()。有两种原因可能引起 Ti 的 还原,首先是来自前驱物中的有机基团的热处理过程,有机碳在燃烧过程中从周围气体和 TiO₂ 晶格网络中夺取 O^[11];其次可能是掺杂 Nd 改变了 Ti 和 O 周围的化学环境,同时也夺取 O,从而引起 Ti 从是 Ti()被还原为 Ti()。

通常晶型 TiO₂ 中的氧物种为单一的 Ti - O 八 面体晶格氧,其O1s 的 XPS 峰呈正态分布,当 Nd 掺杂后,外来的 Nd 在某种程度改变了 TiO₂ 本体 氧元素周围的化学环境,其电子结合能发生变化。 Nd 掺杂 TiO₂ 纳米材料表面 O1s 的高分辨 XPS 峰 结果表明,氧元素有 3 种化学态,表 3 给出了各光 催化剂中氧元素不同氧化态的结合能及百分比。 Sanjin é 等人研究称还原样品中氧元素由 3 种不同 氧化态组成:位于 530.0 eV 的(M - O)氧化物键, 位于(531.5 ±0.5) eV 的羟基(氢氧基团)或缺陷

(1) \ddagger TiO₂; (2) 0.2 % Nd³⁺/TiO₂; (3) 0.7 % Nd³⁺/TiO₂; (4) 1.2 % Nd³⁺/TiO₂; (5) 2.0 % Nd³⁺/TiO₂

表 2 光催化剂表面 Ti2p 电子的 XPS 分析结果 *

	T : 0			Ti2p _{3/2}					
Nd $11/$ (mol $-mol^{-1}$)	$112p_{1/2}$			Ti()			Ti ()		
	BE/eV	FWHM/eV	面积/ %	BE/eV	FWHM/eV	面积/%	BE/eV	FWHM/eV	面积/%
0.0%	464.66	1.02	32.88	457.69	0.98	0.11	458.98	1.93	67.01
0.2%	464.60	1.03	33.42	457.67	0.98	0.82	458.93	1.96	65.76
0.7%	464.78	1.05	32.57	457.72	0.83	0.90	459.11	1.96	66.53
1.2%	464.38	1.07	33.66	457.81	0.98	2.48	458.73	2.01	63.86
2.0%	465.19	1.15	35.46	458.00	0.44	4.76	459.57	2.31	59.78

* FWHM: 半峰宽; BE: 电子结合能 (下表同)

22 卷

Nd/ Ti/ $O1s_{1/3}$ O1s_{2/3} O1s3/3 $(mol \cdot mol \cdot 1)$ BE/eVFWHM/eV 面积/% $B\,E/\,e\,V$ FWHM/eV 面积/% B E / e VFWHM/eV 面积/% 0.0% 530.16 1.19 87.46 531 67 1 66 12 54 0.2% 530.24 1.22 82.77 532.01 1.76 528.61 1.08 1.53 15.69 0.7% 530.39 1.20 76.18 532.01 1.76 22.30 0.76 1.52 528.83 1.2% 529.98 1.19 82.20 531.38 1.76 13.49 528.67 0.94 4.31 2.0% 531.61 1.69 55.31 533.14 1.62 41.58 529.75 1.69 3.11

表 3 纯 TiO₂ 及 Nd 掺杂 TiO₂ 纳米材料表面 O1s 电子的 XPS 结果

氧化物键,以及位于(533 ±1) eV 的化学吸附氧或 吸附水分子中的氧^[12]。有人对 Nd 表面氧化物的 生长过程进行了 XPS 研究,其中表面 O1s 谱采用 三高斯分布拟合得到峰位分别为 530.6,532 及 533.2 eV 的 3 个峰,对应标准数据表知 530.6 eV 对应于 Nd 的氧化物 Nd₂O₃ 中的 O1s 峰,另外两 个峰分别对应于 Nd 氢氧化物中的氧及表面吸附 水中的氧^[13]。如表 3 所示,在本实验研究中 530 eV 附近的O1s 峰则对应于(M - O)氧化物键,大多数 为 TiO₂ 中的 Ti - O,少部分与 Nd 配位的 Nd - O; 532 eV 附近的O1s 峰则对应于 Nd 掺杂 TiO₂ 纳米材 料表面的 OH 基团或表面吸附水; 528 eV 附近的O1s 峰可能是因为 Nd 掺杂与 Ti - O 作用而产生电子结 合能减小的 Nd - O 键以及 Ti - O。

表 4 的数据表明, Nd 掺杂提高了光催化剂表 面[O]/[Ti]原子比和 Ti()的浓度, 掺杂 2.0% Nd³⁺/TiO₂表面[O]/[Ti]原子比和 Ti()的浓度 为最高。2.0% Nd³⁺/TiO₂表面[O]/[Ti]原子比 远远高于纯 TiO₂表面[O]/[Ti]原子比 2, 一方面 过量 O 元素可能源于光催化剂表面的化学吸附 水^[14], 另一方面可能是因为 Nd 的掺杂, 尤其是高 浓度 Nd 掺杂夺取了 TiO₂ 晶格网络中的 O 或夺取 周围气体中的 O, 形成了表面氢氧化物 Nd(OH)₃ 或表面氧化物 Nd₂O₃。

2.4 吸附性能

污染物在催化剂表面的吸附是光催化反应的

表4 光催	化剂表面「	O]/[T i]	原子比和 Ti()的浓度
-------	-------	--------------------------	----------	------

光催化剂	[O]/[Ti]	Ti ()/ [Ti (() + Ti ()]
TiO ₂	2.11	0.16
$0.2~\%~Nd^{3+}/~TiO_2$	2.23	1.23
$0.7 \% Nd^{3+}/TiO_2$	2.46	1.35
$1.2 \% Nd^{3+}/TiO_2$	2.48	3.74
2.0 % Nd ³⁺ / TiO ₂	10.8	7.04

必要条件,提高 TiO₂ 对反应底物的吸附能力可使 光催化剂的能力得到改善。如图 3 所示,Nd 掺杂 TiO₂ 对甲基橙的吸附量明显高于纯 TiO₂ 的,其中 $1.2 \% Nd^{3+}/TiO_2$ 的吸附百分率最高。

晶体表面任何性质的变化都直接影响着材料 的吸附性能。Nd³⁺的半径(0.099 nm)远大于 Ti⁴⁺ 的半径(0.068 nm), Nd 可能难以进入 TiO₂ 晶格 网络中^[15], 正如表 1 所示各光催化剂的晶胞参数 a 以及晶胞参数 c 差异不明显。但是,一方面可能 由于 Nd 掺杂所得催化剂比表面积远大于纯 TiO₂ 的比表面积(表 1),高的比表面能有助于反应物的 吸附;另一方面溶胶凝胶法掺杂可以使 Nd 在 TiO₂ 基 体充分分散, Nd³⁺的阳离子电场对甲基橙负电磺酸基 团有很强的作用而有利于吸附的改善。这说明掺杂 Nd 可明显提高 TiO₂ 纳米粒子的吸附能力。

2.5 光催化降解甲基橙的活性

各光催化剂上甲基橙溶液的光催化降解一级 动力学曲线如图 4 所示。一般,光催化降解一级反 应动力学常数越大,则催化剂光催化活性越强^[16]。 从表 5 可看出, Nd 掺杂提高了 TiO₂ 对甲基橙的 光催化降解能力,其中 1.2 % Nd³⁺/TiO₂ 的光催 化活性最高。

许多研究表明,金属离子掺杂具有一个最佳 浓度。随掺杂浓度的提高,表面空间电荷层变窄, TiO2受光激发所得光生电子和空穴可有效分离, 光生载流子寿命延长;但当掺杂浓度低于最佳浓 度时,半导体中没有足够捕获光生载流子的陷阱, 光生电子和空穴不能达到最有效分离;掺杂为最 佳浓度时空间电荷层厚度正好等于入射光穿透深 度,光生电子和空穴达到最优分离,对光催化反应 最有利;当掺杂过量,会导致表面光生载流子复合 中心增多,降低光催化效率。

 Ti() + O₂
 Ti() + O₂
 (3)

 催化剂表面 Ti() 浓度越高则引起更多的氧缺陷
 (4)
 (3)

 位,从而使催化剂更容易吸附氧气;如式3所示,
 (3)

图 4 各光催化剂上甲基橙光催化降解一级动力学曲线 () 纯 TiO₂; () 0.27 %Nd³⁺/TiO₂; () 0.7 %Nd³⁺/ TiO₂; (▼) 1.2 %Nd³⁺/TiO₂; () 2.0 %Nd³⁺/TiO₂

表 5 各催化剂上甲基橙光催化降解一级动力学常数与其相关系数

光催化剂	纯 TiO2	$0.2 \% Nd^{3+}/TiO_2$	$0.7 \% Nd^{3+}/TiO_2$	1.2 % Nd ³⁺ / TiO ₂	$2.0 \% Nd^{3+}/TiO_2$
<i>K</i> / 10 ^{- 4} s ^{- 1}	2.0318	2.4189	2.7439	4.6082	2.8341
相关系数 R^2	0.9965	0.9960	0.9983	0.9975	0.9977

TiO₂表面上的 Ti() 与吸附氧气反应在形成 Ti ()的同时形成超氧负离子 $(O_2^{-})^{[17-19]}$,这种电 荷转移有效抑制了光生电子和空穴的复合^[20];这 意味着 Ti()浓度越高则催化剂的光催化活性就 会越高。但若催化剂表面的光生载流子复合中心 太多必然导致光催化效率的降低。由表 4 的催化剂 表面 XPS 分析结果表明, 随 Nd 掺杂量增加, 光催 化剂表面[O]/[Ti]原子比和 Ti()的浓度也增 大, 掺杂 2.0%的 Nd 时最大; 尽管 2.0% Nd³⁺/ TiO_2 表面具有高比例的 Ti()) 浓度, 但其表面 [O]/[Ti]原子比明显大于其他催化剂的, 与1.2% Nd^{3+}/TiO_2 相比较,其光催化活性降低了,很可能 源于过量 Nd 掺杂造成氢氧化物(Nd(OH)3)、氧化 物(Nd₂O₃)或强吸附水在半导体表面的过度积聚, 可能成为光生电子/空穴的复合中心,降低光生载 流子的转移速率和寿命,从而降低其光催化活性。

3 结 论

Nd 掺杂可以提高光催化剂的热稳定性、减小 晶粒尺寸、增大比表面积,同时改变光催化剂表面 化学组成和钛的价态,改善催化剂的吸附性能,提 高催化剂的光催化活性,掺杂 1.2 % Nd 离子时光

催化剂的光催化降解甲基橙的能力最强。

参考文献:

- Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238 (5358): 37.
- Hoffman M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chem. Rev., 1995, 95: 69.
- [3] Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces [J]. Chem. Rev., 1993, 93: 267.
- [4] 王艳芹,张 莉,程虎民,等. 掺杂过渡金属离子的 TiO₂
 复合纳米粒子光催化剂-罗明丹 B 的光催化降解 [J]. 高等学校化学学报,2000,21(6):958.
- [5] 冯良荣,吕绍洁,邱发礼. 过渡元素掺杂对纳米 TiO₂ 光催
 化性能的影响 [J].化学学报,2002,60(3):463.
- [6] Li F B, Li X Z. Photocatalytic properties of gold/gold ionmodified titanium dioxide for wastewater treatment [J]. Applied Catalysis A: General., 2001, 5910: 1.
- [7] JoséA. Navó, Gerardo Colón, Manuel Macás, et al.
 Iron-doped titania semiconductor powders prepared by a solgel method. Part I: synthesis and characterization [J]. Applied Catalysis A: General., 1999, 177: 111.
- [8] 李芳柏,李湘中,古国榜,等. 金离子掺杂对二氧化钛光催 化性能的影响 [J].化学学报,2001,59:1072.
- [9] 梁金生, 金宗哲, 王 静. 稀土/ 纳米 TiO₂ 的表面电子结

1期

80

构 [J]. 中国稀土学报, 2002, 20(1): 74.

- [11] 余家国,赵修建,赵青南,等. TiO₂光催化薄膜的 XPS 研究 [J]. 材料研究学报,2000,14(2):203.
- [12] Sanjin é R, Tang H, Berge H, et al. Electronic structure of anatase TiO₂oxide [J]. J. Appl. Phys., 1994, 75: 2945.
- [13] 李雅,陈玲燕,张哲,等. XPS 研究 Nd 表面氧化物的
 生长过程 [J].物理学报,2001,50(1):79.
- [14] 余家国,赵修建. 多孔 TiO₂光催化纳米薄膜的制备和微观结构研究 [J]. 无机材料学报,2000,15(2):347.
- [15] Xu AnWu, Gao Yuan, Liu HanQin. The preparation, characterization, and their photocatalytic activities of rareearth-doped TiO₂ nanoparticles [J]. Journal of Catalysis, 2002, 207: 151.
- [16] 李芳柏, 古国榜, 李新军, 等. 纳米复合 Y₂O₃/ TiO₂ 的制

备、表征及其光催化性能研究 [J]. 中国稀土学报, 2001, 19 (3): 225.

- [17] Liu H, Ma H T, Li X Z, et al. The enhancement of TiO₂ photocatalytic activity by hydrogen thermal treatment [J]. Chemosphere, 2003, 50(1): 39.
- [18] Madhu Kumar P, Badrinarayanan S, Sastry M. Nanocrystalline TiO₂ studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states [J]. Thin Solid Films, 2000, 358(1 - 2): 122.
- [19] Mills A, Morris S. Photomineralization of 4-chlorophenol sensitized by titanium dioxide: a study of the initial kinetics of carbon dioxide photogeneration [J]. J. Photochem. Photobiol. A: Chem., 1993, 71: 75.
- [20] Li FangBai, Li Xinjun, Li Xiangzhong, et al. Photoelectrocatalytic properties and reactivity of Ti/Au-TiO₂ mesh electrodes [J]. Transactions of Nonferrous Metals Society of China, 2002, 12(6): 1180.

Enhancement of Photo-Catalytic Properties and Activity of Nd³⁺-Doped TiO₂ Powders

Hou Meifang¹, Li Fangbai²*, Li Ruifeng³, Wan Hongfu², Zhou Guoyi¹, Xie Kechang³(1. South China Institute of Botany, Chinese Academy of Sciences, Guangzhou 510650, China; 2. Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environment and Soil Science, Guangzhou 510650, China; 3. Taiyuan University of Science and Technology, State Key Laboratory of Carbon 1 Chemistry and Technology, Taiyuan 030024, China)

Abstract : The crystal pattern and parameter , the specific area , the surface chemical state of pure TiO_2 and Nd^{3+} -doped TiO_2 powders prepared by the sol-gel method were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and BET method respectively. The methyl orange (MO) was chosen to be the probe compound to measure their adsorptive properties and photo-catalytic activity. The results shows that the Nd doping hinders the crystal transformation and decreases the relative intensity of (101) peak. The crystallite sizes of Nd³⁺-doped TiO₂ powders decrease while their specific surface

area increase owing to the Nd doping. The XPS measurement show that the surface chemical state can be improved and the content of Ti () on their surfaces increases with the Nd doping. The relationship between the physicochemical properties and the photo-catalytic activity of the photo-catalysts was discussed. The enhancement of photo-catalytic activity of Nd³⁺-doped TiO₂ powders increase because of their adsorption capacity and the suitable percent of Ti() on the surface. The adsorption and photo-degradation experiments show that the optimum molar content of Nd may be 1.2 %.

Key words : catalitic chemistry ; photo-catalysis ; TiO2 ; Nd ; methyl orange ; rare earths