# 模拟氮沉降对三种南亚热带树苗 生长和光合作用的影响

# 李德军,莫江明\*,方运霆,蔡锡安,薛璟花,徐国良

(中国科学院华南植物研究所,广东肇庆鼎湖山树木园 526070)

摘要: 探讨了 3 种南亚热带优势树种荷木(S chin a superba)、锥栗(Castanop sis chinensis)和黄果厚壳桂(Cryp tocary a concinna)的 幼苗对模拟氮沉降增加的响应。实验分为对照组A 和处理组B、C、D 和 E, 分别以NH NO<sub>3</sub> 形式人为喷施 0, 5, 10, 15 和 30 g N /(m<sup>2</sup> · a)。研究结果表明, 高氮处理组的幼苗生长逐渐受到抑制, 而中氮处理则大大促进了幼苗的生长。 经过 7 个月的处 理, 3 种树苗的净光合速率呈现出随氮处理水平增加而先增加后减小的特点, 即C 组的净光合速率最高, 而D 组则开始下降。荷木幼苗的水分利用效率和锥栗幼苗的气孔导度的变化趋势与净光合速率一样, 但黄果厚壳桂幼苗的气孔导度和水分利用效率 及荷木幼苗气孔导度各处理间差异不明显。荷木和黄果厚壳桂幼苗的光合色素含量随处理水平增加而增加, 锥栗幼苗的 Ch1 a 和 Ch1 (a+ b) 含量以B 组最高, 总体趋势呈现出随处理水平先增加后减小的特点, 但类胡萝卜素随处理水平增加而增加。 关键词: 氮沉降; 南亚热带; 树苗; 生长; 光合作用

## Effects of simulated n itrogen deposition on growth and photosyn thesis of Schima

### superba, Castanopsis chinensis and Cryptocarya concinna seedlings

LIDe-Jun, MO Jiang Ming<sup>\*</sup>, FANG Yun-Ting, CA IXi-An, XUE Jing-Hua, XU Guo-Liang (South China Institute of Botany, Chinese A cademy of Sciences, Dinghu, Zhaoqing, Guang dong 526070). Acta Ecologica Sinica, 2004, 24(5): 876~882

Abstract To evaluate the responses of subtropical forest trees in China to elevated nitrogen (N) deposition, we sprayed dissolved NH4NO3 on seedlings of Schima superba, Castanopsis chinensis and Cryptocarya concinna twice every month The simulated elevated N depositions were equivalent to 0 (A), 5 (B), 10 (C), 15 (D) and 30 (E)  $g N/(m^2 \cdot a)$  and began in January, 2003 The results indicated that stem base diameter, height and branch number of seedlings for these three species increased significantly with N loads, whereas they decreased in the high N treatment (E). M edium N treatment enhanced grow th significantly, e g, stem base diameter, height and branch number of all species were highest in C treatment High N load also had great impact on seedling mortality, e g, the highest N treatment resulted in the highest mortality in all species A fter treatment for 7 month, net photosynthetic rate (Pn) increased in treatments B and C, how ever decreased in D. W ater use efficiency (WUE) of both S. superba and C. chinensis, and stom atal conductance of C. concinna and stom atal conductance of S. superba seedlings were not affected significantly. The chlorophyll and carotenoid content of S. superba and C. chinensis seedling, the content of Ch1 a and Ch1 (a+ b) was highest in B treatment, and then seemed to decrease in the higher treatments, how ever, the content of carotenoid increased bad up to the highest N bad

基金项目:国家自然科学基金资助项目(30270283);广东省自然科学基金资助项目(021524);中国科学院知识创新工程领域前沿项目和中国科 学院华南植物研究所所长基金项目资助

收稿日期: 2003-09-13; 修订日期: 2003-12-17

作者简介:李德军(1978~),男,湖南省桂阳县人,硕士生,从事森林生态系统CN循环及环境生理生态研究。

\* 通讯作者: Author for correspondence, E-mail: mojn@scib.ac cn

Foundation item: National Natural Science Foundation of China (No. 30270283), Provincial Natural Science Foundation of Guangdong (No. 021524), Field Frontiers Project of CAS Know ledge Innovation Program and Director Foundation of South China Institute of Botany, CAS Received date: 2003-19-13; Accepted date: 2003-12-17

Biography: LIDe-Jun, Master candidate, mainly engaged in C, N cycle in forest ecosystems and environmental ecophysiology.

Key words: nitrogen deposition; subtropics; tree seedlings; growth; photosynthesis 文章编号: 1000-0933(2004)05-0876-07 中图分类号: Q 945. 1, Q 948 文献标识码: A

在过去几十年中, 化石燃料燃烧 化肥生产和使用及畜牧业集约化经营等人类活动向大气排放了大量的氮化物, 导致氮化物在大气中累积并向陆地和水域生态系统沉降<sup>[1]</sup>。如在欧洲畜牧业和工业发达的地区氮沉降超过 25 kg N /(hm<sup>2</sup> · a)<sup>[2]</sup>; 在严重污染的地区如荷兰, 森林穿透雨中的氮普遍超过 50 kg N /(hm<sup>2</sup> · a), 有些地区甚至超过 100 kg N /(hm<sup>2</sup> · a)<sup>[3]</sup>; 在美国东北部, 当前氮沉降率比本底水平增加了 10~20 倍<sup>[4]</sup>。况且, 随着经济发展的全球化, 氮沉降增加也呈现出全球化趋势<sup>[5]</sup>。在欧美的一些地区, 氮沉降已造成许多陆地和水域生态系统氮饱和, 给生态环境带来了严重的冲击<sup>[1]</sup>。比如, 影响森林植物生长, 严重者导致森林衰退; 影响森林植物组成和多样性; 影响森林碳吸收及引起森林生态系统向大气排放的 N<sub>2</sub>O 增加, 从而加剧温室效应<sup>[6,7]</sup>。基于此, 欧美等国的生态学者近 20a 来就氮沉降对各类生态系统和植物的影响进行了广泛而深入的研究。

事实上,我国已成为世界三大高氮沉降区之一<sup>[6]</sup>,许多地区存在高氮沉降现象,如地处经济发达的珠江三角洲北缘的鼎湖 山自然保护区,1989~1990年度和1998~1999年度的降水氮沉降分别为 35.57 和 38.4 kg N / (hm<sup>2</sup> · a)<sup>[8,9]</sup>,黑龙江帽儿山森 林定位站降水氮沉降为 12.9 kg N / (hm<sup>2</sup> · a)<sup>[10]</sup>。这些数字均高于或远远高于森林在生长季节对氮的需求量(约 5~ 8 kg N / (hm<sup>2</sup> · a))<sup>[11]</sup>。但遗憾的是,国内这方面的研究还很缺乏。本文以我国南亚热带森林 3 种常见的优势树种为材料,研究氮 沉降增加对其生长和光合作用的影响,其目的是探讨氮沉降对南亚热带森林植物的影响及其机制,以阐明氮沉降增加的条件下 南亚热带森林植物的响应,以及南亚热带森林群落动态的潜势。

1 材料和方法

1.1 实验材料

2002 年 10 月 25 日,将荷木(*S* chim a superba)、锥栗(*Castanop sis chinensis*)和黄果厚壳桂(*C npt tocary a concinna*)的 1 年 生幼苗栽于鼎湖山树木园的苗圃中。苗圃土壤在移栽幼苗之前经过充分混匀。实验分 5 个处理组,分别为 A (对照)、B (5 g N /(m<sup>2</sup> · a))、C (10 g N /(m<sup>2</sup> · a))、D (15 g N /(m<sup>2</sup> · a))和 E (30 g N /(m<sup>2</sup> · a)) (不包括大气沉降的氮量),每个处理组分成 3 个重复,每个重复每种树苗移栽 40 株。不同处理之间留有足够深的壕沟,防止相互之间造成干扰。从 2003 年 1 月开始,每月月 中和月底分 2 次向幼苗全株喷施 NH4NO3,全年平均喷施。整个实验期间,幼苗在自然条件下生长,但为了实验的顺利进行,每 月除草 1 次。

研究设计特点 (1)将幼苗置于野外自然条件下生长,尽可能减少人为干扰。目前几乎所有的模拟氮沉降对幼苗生长的影响的研究都是在温室或大棚中进行的盆栽实验,其优势在于可操作性强,但也存在很大的弊端,即减少了其他因子的影响。(2) 对幼苗进行全株喷施NH4NO3。几乎所有的相关研究都是将氮肥直接喷施在土表或干脆与土壤混合,而实际上大气氮沉降对幼 苗的影响是首先作用于植株地上部分的,因此本研究可以尽可能与实际相符。

#### 1.2 实验方法

基径、株高和侧枝数调查 在每个处理的每个重复中,随机选定 10 棵幼苗,标记,从 2003 年 1 月开始,每隔 3 个月测定这些标记的幼苗的基径,株高和侧枝数(1 月未测定侧枝数)。

幼苗存活率调查 2003 年 6 月 11 日全面调查幼苗的存活情况,调查时只要枝干上长有芽即视为存活。

叶片气体交换测定 2003 年 7 月 28 日(晴) 以美国CD 公司生产的CF301 便携式光合作用测定仪进行测定。用其开放系统 测 定幼苗叶片的净光合速率(*Pn*, (mo ICO  $_2/(m^2 \cdot s)$ ), 蒸腾速率(*E*, mmo I/(m<sup>2</sup> · s))、气孔导度(*C*, mmo I/(m<sup>2</sup> · s))和胞间 CO  $_2$  浓度(*Ci*, m I/m<sup>3</sup>)等。从 7:00~17:00 每隔 2 h 测定一次。测定时尽量选择新成熟的完整叶片,每个处理测定 5~6 个重复。 由于 E 处理组的幼苗叶片受伤害很严重,很难找到完整叶片,故没有测定其叶片气体交换。以 *Pn/E* 计算水分利用效率 (*W UE*)。

光合色素含量测定 光合作用测定后, 立即将所测定的叶片摘下, 用以测定光合色素含量。光合色素的提取、测定和计算参考Lichtenthaler 等的方法<sup>[9]</sup>。文中Chl Chl a, Chl b, Chl (a+ b)和Car 分别表示叶绿素、叶绿素 a, 叶绿素 b, 总叶绿素和类胡萝卜素。

1.3 统计分析

采用ANOVA 方法分析氮处理对 3 种树苗生长和光合作用的影响。处理间的差异显著性利用 SPSS 软件以Duncan 多重检验实现。

#### 2 结果与分析

2.1 幼苗生长

2.1.1 基径、株高和侧枝数 经过 7 个月的实验, 氮处理对 3 种树苗的基径、株高和侧枝数均产生影响, 但树种不同, 受影响的 ② © 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved. 程度也不一样。 由图 1 可知, 对照组A 和处理组B、C、D 及 E 的荷木幼苗的基径在 7 月份调查时分别比 1 月份增长了 70.1%、82.0%、99.7%、70.1% 和 61.0%, 同期锥栗幼苗分别增长了 76.9%、98.3%、138.9%、105.7% 和 68.4%。两个树种C 组的幼苗基径显著高于B 和D 组(P < 0.05), 极显著高于A 组(P < 0.01), 而 E 组的幼苗基径则明显小于其他各组(P < 0.05)。 表明 C 组的幼苗生长得最好, 而 E 组的幼苗生长已经受到了明显的抑制。 黄果厚壳桂幼苗上述各组同期分别增长了 40.7%、47.5%、61.6%、49.8% 和 36.7%, 与荷木和锥栗幼苗的变化一样, C 处理组基径最大, 而 E 处理组则比对照还小。

从图 2 可知,在 7 月份调查时,对照组A 和处理组B、C、D 及 E 的荷木幼苗的株高分别比 1 月份增长了 64.0%、83.4%、 90.2%、76.7% 和 66.7%,黄果厚壳桂幼苗株高同期分别增长了 32.6%、46.9%、59.2%、58.9% 和 9.8%。2 个树种B、C 和D 3 组均明显高于A 和 E 组(*P*<0.05)。同期锥栗幼苗的株高分别增长了 61.8%、81.8%、118.5%、86.2% 和 42.0%,其中C 组幼 苗的株高明显高于其他各组(*P*<0.05),而 E 组则明显小于其他各组(*P*<0.05)。

幼苗的侧枝数也是反映幼苗生长状况的一个重要指标。 从表1可以看出氮处理对幼苗侧枝数的影响情况。在7月份调 查时,3种树苗的侧枝数均以C组最多,荷木、锥栗和黄果厚壳 桂幼苗C组的侧枝数分别比对照增加了98.5%、65.8%和 31.3%。对于E组的侧枝数,荷木和锥栗幼苗与对照相当,黄 果厚壳桂幼苗则比对照减少了48.4%。

可见, 经过 7 个月的处理, 3 种幼苗的基径, 株高和侧枝数 均以 C 组增长最大, 而最高处理组 E 组的幼苗增长情况则与 对照相当, 甚至比对照还低, 说明高氮处理不但对幼苗生长没 有促进作用, 反而会起到抑制作用。 实际上, 氮处理对幼苗生 长的抑制作用在 4 月份调查时就已经有所反映。如, 4 月份调 查时高氮处理组(D 和 E) 上生长的荷木幼苗基径明显小于其 他 2 个处理组(P < 0.01)和对照组A (P < 0.05)。又如, E 组的 黄果厚壳桂幼苗的株高也显著小于其他 3 个处理组(P < 0.05), 甚至比对照A 还低, 但差异不明显(图 1 和图 2)。

2.1.2 幼苗存活率 从表 2 可知, 中等程度的氮处理对幼苗 的存活率没有明显的影响, 但高氮处理则导致幼苗存活率明 显降低。如荷木幼苗, E 组存活的幼苗数量比对照减少 22.7%; 又如锥栗幼苗, D 和 E 组存活的幼苗数量分别比对照 减少 20.2%和 72.6%; E 组的黄果厚壳桂存活的幼苗数量比 对照减少 58.76%。

表1 氮处理对幼苗侧枝数的影响

| Table 1             | Effec | ets of n itrogen load on | seedling branches |  |  |
|---------------------|-------|--------------------------|-------------------|--|--|
| 处理组                 |       | 4日April                  | 7日Ink             |  |  |
| T reatment groups   |       | ·/J//p/m                 | / / J J U Iy      |  |  |
| 荷木                  | А     | 1.71(0.27)B              | 2.38(0.10)C       |  |  |
| S. sup erba         | В     | 2.23(0.23)B              | 3.13(0.15)BC      |  |  |
|                     | С     | 2.36(0.19)B              | 4.73(0.84)A       |  |  |
|                     | D     | 2.51(0.42)B              | 3.21(0.27)B       |  |  |
|                     | Е     | 4.33(0.51)A              | 2.82(0.59)BC      |  |  |
| 锥栗                  | А     | 0.56(0.19)b              | 2.31(0.51)B       |  |  |
| $C \cdot chinensis$ | В     | 1.46(0.67)b              | 3.58(0.53)A       |  |  |
|                     | С     | 2.35(0.08)a              | 3.83(1.04)A       |  |  |
|                     | D     | 1.73(0.27)a              | 3.39(0.70)A       |  |  |
|                     | Е     | 2.38(0.45)a              | 2.44(0.44)B       |  |  |
| 黄果厚壳桂               | А     | 5.97(0.30)b              | 6.89(0.62)b       |  |  |
| C. concinna         | В     | 6.3(0.21) ab             | 8.33(0.38)ab      |  |  |
|                     | С     | 7.43(0.64)ab             | 9.05(0.67)a       |  |  |
|                     | D     | 7.53(0.41)a              | 6.97(0.39)b       |  |  |
|                     | Е     | 5.59(0.90)b              | 3.56(0.44)c       |  |  |

\* 所给数值为平均值,括号内为标准差,后附大小写字母分别表 示不同处理间在 P = 0.01 和 P = 0.05 水平上差异显著 M ean value is given, S. E in the parenthesis, and the capital and small letters mean significantly different among the N treatment at P = 0.01 and P = 0.05 level (Duncan's multiple range test); the same below

| Table 2 Effects of nitrogen load on seedling survival rate (%) |                 |              |              |              |              |
|----------------------------------------------------------------|-----------------|--------------|--------------|--------------|--------------|
|                                                                | А               | В            | С            | D            | Е            |
| 荷木 S. sup erba                                                 | 87. 50(2. 50) a | 80.00(1.44)a | 85.83(6.51)a | 91.67(0.83)a | 67.5(10.41)b |
| 锥栗 C. chinensis                                                | 84.16(3.00)a    | 73.33(4.41)a | 85.00(7.64)a | 66.67(3.00)b | 22.50(1.44)c |
| 黄果厚壳桂C. concinna                                               | 95.1(1.44)A     | 94.17(3.63)A | 95.83(0.83)A | 89.17(3.63)A | 39.17(3.00)B |

表 2 氮处理对幼苗存活率的影响(%)

2.2 光合作用

2.2.1 叶片气体交换 表 3 的结果表明,中等程度的氮处理对 3 种幼苗的光合作用有利,但高氮处理则趋向于对光合作用不利。3 种树苗的日平均净光合速率均以 C 组最高,荷木、锥栗和黄果厚壳桂幼苗的 *Pn* 分别比对照组高 22.7%、83.3% 和 14.5%。3 个树种D 处理组的幼苗的日平均净光合速率均比 C 处理组的低,黄果厚壳桂和锥栗幼苗甚至比对照还低,但差异不显著。

氮处理对荷木幼苗WUE的影响与对Pn的影响相似(表 3),C 组比对照高 46.6%,D 组呈现下降趋势,但不显著。锥栗幼苗的WUE,A、B 和C 之间没有明显差异,但三者均明显高于D 处理(P < 0.01)。黄果厚壳桂幼苗的WUE 各组之间差异不明显,但呈现出B 组最高,向二头逐渐减小的趋势。

氮处理没有对荷木和黄果厚壳桂幼苗的气孔导度产生明显影响,但显著促进了锥栗幼苗的气孔导度(P< 0.01,表 3)。



图 1 氮处理对幼苗基径的影响

Fig. 1 Effects of nitrogen load on stem base diameter(SBD) during the grow th period

Each value is the mean of three determinations, and the standard error is given by a vertical bar D ifferent letters above the columns indicate significant differences among the five groups (Duncan's multiple range test: p < 0.05); The same below



图 2 氮处理对幼苗株高的影响

Fig. 2 Effects of nitrogen load on height during the grow th period

| 表 3 | 氮处理对日平均净光合速率(Pn). | 、水分利用效率(WUE)、 | 气孔导度(C)的影响 |
|-----|-------------------|---------------|------------|
|     |                   |               |            |

| Table 3 | Effects of n itrogen | load on Pr | NUE and C |
|---------|----------------------|------------|-----------|
|---------|----------------------|------------|-----------|

|                  |                                               | А             | В             | С             | D             |
|------------------|-----------------------------------------------|---------------|---------------|---------------|---------------|
| 荷木 S · sup erba  | $Pn(\mu mol CO_2/(m^2 \cdot s))$              | 2.56(0.18)B   | 2.68(0.27)AB  | 3.14(0.24)A   | 2.84(0.31)AB  |
|                  | $WUE (mmol CO_2/mol H_2O)$                    | 1.48(0.15)b   | 1.60(0.31)ab  | 2.17(0.41)a   | 1.64(0.25)ab  |
|                  | $C (\text{mmol}/(\text{m}^2 \cdot \text{s}))$ | 81.55(17.63)  | 61.69(8.28)   | 61.16(8.46)   | 60.90(13.90)  |
| 锥栗 C. chinensis  | $Pn(\mu mol CO_2/(m^2 \cdot s))$              | 2.40(6.0)B    | 3.74(0.33)A   | 4.40(0.23)A   | 1.87(0.24)B   |
|                  | $WUE (mmol CO_2/mol H_2O)$                    | 2.08(0.14)A   | 2.12(0.40)A   | 1.99(0.27)A   | 1.18(0.16)B   |
|                  | $C (\text{mmol}/(\text{m}^2 \cdot \text{s}))$ | 61.71(0.22)B  | 105.61(9.10)A | 121.47(5.18)A | 92.33(16.91)A |
| 黄果厚壳桂C. concinna | $Pn(\mu mo ICO_2/(m^2 \cdot s))$              | 2.27(0.399)   | 2.56(0.536)   | 2.6(0.564)    | 2.24(0.506)   |
|                  | $WUE \pmod{CO_2/mo1H_2O}$                     | 1.91(0.615)   | 2.35(1.107)   | 1.78(0.802)   | 1.54(0.568)   |
|                  | $C(\text{mmol}/(\text{m}^2 \cdot s))$         | 50.37(11.851) | 53.45(11.823) | 42.57(12.922) | 41.03(16.541) |

2.2.2 光合色素含量 荷木幼苗叶片的 Ch1含量, 无论是以单位面积还是以单位鲜重计算, 均呈现出随氮处理水平增加而增加的趋势, 其中 C和D组的 Ch1含量与对照相比显著增加 (P < 0.05, 图3a, b)。D组叶片的 Ch1a, Ch1b, Ch1(a+b)和 Car含量以单位面积计算分别比对照增加了52.8%、82.4%、59.2%和64.6%, 以单位鲜重计算分别比对照增加了52.3%、81%、</li>
 ③ © 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

58.6% 和 64.9%。3 个处理组单位面积叶片的Car 含量均比对照组高, 其中B 与A 差异显著(P< 0.05), D 与A 差异极显著(P< 0.01)。基于单位鲜重计算的荷木幼苗叶片Car 含量, 随氮处理水平增加而增加, 且各组间差异均极显著(P< 0.01)。

锥栗幼苗叶片的 Ch1 a 和 Ch1 (a+ b)的含量, 无论是以单位面积还是以单位鲜重计算, 均以B 组最高 (P < 0.01), C 组最低 (P < 0.01), 但D 与A 组差异不明显。Ch1 b 的含量各组间无明显差异。Car 的含量, 无论是以单位面积还是以单位鲜重计算, 均 趋向于 D> B> A > C, D 和B 组明显高于 C (P < 0.01), 但前三者差异不明显 (图 3c, d)。

黄果厚壳桂幼苗叶片的 Ch1和 Car 含量, 无论是以单位面积还是以单位鲜重计算, 均呈现出随氮处理水平增加而增加的趋势。D 组黄果厚壳桂幼苗叶片的 Ch1a, Ch1b, Ch1 (a+ b)和 Car 含量以单位面积计算分别比对照增加了 61.5%、74.3%、65.6% 和 42.1%, 以单位鲜重计算分别比对照增加了 58.7%、71.1%、61.7% 和 39.7%。 Ch1a 含量以单位面积计算D 组明显高于B 组和A 组 (P < 0.05), 以单位鲜重计算D 组只比A 组明显增加 (P < 0.05)。 Ch1b 含量D 组与B 和A 组之间存在极显著差异 (P < 0.01)。总叶绿素含量D 与B 和A 组之间存在明显差异 (P < 0.05)。 Car 含量各处理之间差异不明显 (图 3e, f)。

荷木幼苗的Ch1 a/b 值趋向于随氮处理水平增加而减小, A 和B 组明显高于D 组(P < 0.05), P = P = P, P = P = P

可见,荷木和黄果厚壳桂幼苗的光合色素随处理水平增加而增加,但锥栗幼苗的光合色素含量随氮处理水平增加呈现先增加后下降的趋势。值得注意的是锥栗幼苗的Chla、Chlb和Car含量均以C组最低,其原因可能与植株生长产生的稀释效应有关,因为C组对锥栗幼苗生长的促进作用在3种树苗中是最大的。



图 3 氮处理对光合色素含量的影响

Fig. 3 Effects of nitrogen load on content of photosynthetic pigments

#### 4 讨论

本研究的结果表明,3种树苗经过较长时间的处理,高氮处理将逐渐对幼苗生长产生负面效应,而中等程度的氮处理则对 幼苗生长有利。这与其他研究结果是一致的。如哈佛森林的实验<sup>[17]</sup>和Nakaji等<sup>[18,19]</sup>对日本柳杉(*Cryp tan eria jap onica*)和日本 赤松(*P inus densif lora*)幼苗进行的氮处理实验。氮处理对幼苗生长具有促进作用,这是显然的。这是由于氮是大多数陆地植物 生长的主要限制因子,因此,有效氮(包括氮沉降或者施氮)的增加无疑会促进植物生长。在这方面,常见的例子就是林业经营上 通过施加氮肥来促进林木生长<sup>[13]</sup>。又如,有人认为目前欧洲和北美森林的生长速度比 20 世纪早期要快,其中大气氮沉降的施 肥作用是很重要的一个原因<sup>[14-16]</sup>。但过量的氮沉降或者施氮却对树木生长有害。在Nakaji等<sup>[18,19]</sup>的实验中,5 个月后即发现高 氮处理(113 和 340kg N /hm<sup>2</sup>)的日本赤松的全株生长量开始下降,两个生长季节后,比对照显著下降(*P* < 0.001)。过量氮沉降 或者施氮导致植物生长下降的原因是多方面的<sup>[6]</sup>。

© 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

氮沉降或者氮处理引起植物死亡率增加的例子国外已有报道,国外的研究如Dueck<sup>[20]</sup>的熏氨气实验(模拟干沉降),高氮处 理(151  $\mu$ l/m<sup>3</sup>)的石楠(*Calluna vulgaris*)8个月后存活量比对照下降了 20%;对 2 种草本植物进行的相同浓度的熏氨气实验,16 个月后,存活量分别下降了 30% 和 50%<sup>[21]</sup>;M cN ulty 等<sup>[22]</sup>甚至报道了长期低强度的氮处理导致红果云杉(*Picea rubens* Sarg.) 的生长下降和死亡率增加;Gotelli和 Ellison<sup>[31]</sup>也报道了长期增加的氮沉降增加了北美的瓶子草(*Sarracenia purpurea*)的灭亡 风险。

由于氮与光合作用具有密切关系,如叶片氮含量影响叶片中光合色素含量和核酮糖 1,5-二磷酸羧化酶(Rubisco)的含量和 活性,因此,氮沉降或施氮无疑会影响光合作用及与其相关的气体交换过程。3种树苗的净光合速率随氮处理水平增加表现出 先增加后降低趋势,即C组的Pn达到最大值,然后下降。这与其他的研究结果相符。如Brown等<sup>[23]</sup>对3种常绿松树,即西加云 杉(Picea sitchensis)、美西侧柏(Thuja plicata)和西部铁杉(Tsuga heterophylla)的幼苗进行氮处理,发现叶片氮含量在21mg/g 以下时,所有树种的光合速率均随叶片氮含量线性增加,但当叶片氮含量超过21mg/g时,光合速率反而下降。Nakaji等<sup>[18,19]</sup>的 研究也发现最高氮处理的日本赤松的净光合速率在第一个生长季的中期即开始下降,而在较低氮处理水平下净光合速率随氮 输入量的增加而增加。但在有些研究中,发现氮处理没有引起光合速率变化<sup>[24-27]</sup>。有研究者认为,过量的氮处理引起植物光合 作用下降是由于营养失衡(这是与过量的氮输入伴随发生的主要症状之一),或者是自我荫蔽(Self-shading)所致<sup>[18,19,23]</sup>。

过量的氮输入也会影响叶片光合色素含量,由于光合色素是植物光合作用的重要参与者,其含量及构成显然会影响光合作用进程。这方面的例子报道较多的是氮输入引起叶片光合色素含量增加,如在Warren等<sup>[28]</sup>的研究中,氮处理导致单位面积Chl的含量增加了4倍,并且chl含量与单位面积氮含量呈正相关。又如Péez-SolbaM等<sup>[29]</sup>对欧洲赤松(*Pinus sy lvestris*)幼树进行为期14周熏氨气实验,结果针叶中chla,chlb和car含量分别比对照高29%,38%和11%。这与本研究的结果是一致的。但有些研究得到了不同的结果,如Schaberg等<sup>[27]</sup>发现施氮没有引起各个不同氮处理间chl含量的明显变化。又如同样是对欧洲赤松进行熏氨气处理,另一个实验发现针叶中chla的含量增加,而chlb和car的含量却没发生变化<sup>[30]</sup>。过量的氮导致光合色素含量下降可能与植物营养失衡有关<sup>[18,19]</sup>。

不同树种对氮沉降的响应存在差异。例如,中等水平的氮处理对锥栗幼苗的促进作用最强,对黄果厚壳桂幼苗的促进作用 则最弱。表现在锥栗幼苗的基径,株高和净光合速率与对照相比增幅最大,而黄果厚壳桂则最小。高氮沉降导致锥栗幼苗的死亡 率大大增加,而对荷木幼苗的存活率影响较小。氮沉降增加对不同种植物影响的程度不同可能会对森林生态系统的群落动态产 生影响。已有学者开始着手这方面的研究,如Catovsky等<sup>[32]</sup>通过对氮处理对幼苗的影响的研究,预测新生的北美温带针阔混 交林将以一些演替早期的树种如黄桦(*B etula alleg haniensis*)为主要优势树种,而成林中一些演替后期的树种将更稳定。至于氮 沉降对我国南亚热带森林群落动态将产生何种影响,目前尚无定论。

尽管鼎湖山地区大气氮沉降的水平已经很高,但在短期内,氮沉降对森林植物(至少对于树苗)的生长仍然具有促进作用。 但是,由于氮沉降增加可能对森林群落结构具有潜在影响,因此,对南亚热带森林的总体效应是利是弊有待于进一步研究。并 且,由对幼苗的研究所得到的结论是否适用于自然林也有待于作进一步检验。

#### References

5期

- [1] Vitousek PM, Aber JD, Howarth RW, et al. Human alteration of the global nitrogen cycle: Sources and consequences Ecol Appl, 1997, 7 (3): 737~750
- [2] Binkley D, Son Y, Valentine DW. Do forest receive occult inputs of nitrogen? Ecosystem s, 2000, 3: 321~331.
- [3] Van Breemen N, Van Dijk H F G Ecosystem effects of atmospheric deposition of nitrogen in the Netherlands Environ. Pollut, 1988, 54: 249~ 274
- [4] MagillA H, Aber JD, Hendricks JJ, et al Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition Ecol Appl., 1997, 7: 402~ 415.
- [5] Matson PA, Lohse KA, Hall SJ. The globalization of nitrogen deposition: consequences for terrestrial ecosystems Ambia, 2002, 31: 113~119.
- [6] LiDJ, MoJM, Fang YT, et al. Impact of nitrogen deposition on forest plants A cta Ecologica Sinica, 2003, 23 (9): 1891~1900
- [7] Fenn M E, Poth M A, Aber J D, et al Nitrogen excess in north American ecosystems: predisposing factors, ecosystem responses, and management strategies Ecol Appl, 1998, 8: 706~733.
- [8] Huang ZL, Ding MM, Zhang ZP, et al The hydrological processes and nitrogen dynamics in a monsoon evergreen broad-leafed forest of Dinghu shan A cta Phytoecol S in, 1994, 18 (2): 194~ 199.
- [9] Zhou G Y and Yan J H. The influence of regional atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems A cta Ecologica S inica, 2001, 21 (12): 2002~ 2012
  2005 Tainghua Tangéng Ontigel Ding Ca. Ltd., All rights approximately approxima
  - © 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

- [10] Liu S Y. Biogeochemical cycling characteristics of Dahurian Larch plantation ecosystem. Chin J. Ecol , 1992, 11 (5): 1~ 6
- [11] Hao JM, Xie SD, Duan L, et al Critical load of acid deposition and applications Beijing: Tsinghua University Press, 2001. 6
- [12] L ichtenthaler H K. Chlorophyll and carotenoids: pigments of photosynthetic biomembranes *M ethods in Enzym ology*, 1987, 148: 349~382
- [13] Tamm C O. N itrog en in terrestrial ecosystem s. Questions of productivity, vegetational changes, and ecosystem stability. Berlin: Springer Verlag, 1991.
- [14] KurzWA, AppsMJ, Beukema SJ and Lekstrum T. 20th century carbon budget of Canadian forests Tellus, 1995, 47: 170~177.
- [15] Speicker H, Mielik inen K, KOhlM, et al Grow th trends in European forests Berlin: Springer, 1996
- B ink ley D and H gberg P. Does atmospheric deposition of nitrogen threaten Swedish forests? Forest Ecology and M anagement, 1997, 92: 119~ 152
- [17] MagillA H, Aber J D, Berntson GM, et al Long-term nitrogen additions and nitrogen saturation in two temperate forests E cosystems, 2000, 3: 238~ 253.
- [18] Nakaji T, Fukam i M, Dokiya Y, et al Effects of high nitrogen load on grow th, photosynthesis and nutritrient status of Cryp tom eria jap onica and P inus densif Ira seedlings T rees, 2001, 15: 453~ 461.
- [19] Nakaji T, Takenaga S, M Kuroha, et al Photosynthetic response of Pinus densif lora seedlings to high nitrogen load Environmental Sciences, 2002, 9(4): 269~ 282
- [20] Dueck T A. Effects of ammonia and sulphur dioxide on the survival and grow th of Calluna vulgaris (L.) Hull seedings Functional Ecology, 1990, 4: 109~ 116
- [21] Van der Eerden L J, Dueck T H, Berdowski J J M, et al Influence of NH3 and (NH4) 2SO 4 on heathland vegetation A cta B otanica N eerland ica, 1991, 40 (4): 281~ 296
- [22] M Nulty S G, Aber J D, and Newman S D. Nitrogen saturation in a high elevation New England spruce-fir stand For Ecol M anage, 1996, 84: 109~ 121.
- [23] Brown K R, Thompson W A, Camm E L. Effects of N addition rates on the productivity of *P icea S itchensis*, *Thuja p licata*, and *T sug a heterop hy lla* seedlings II Photosynthesis, <sup>13</sup>C discrimination and N partitioning in foliage *T rees*, 1996, **10**: 198~ 205.
- [24] Brix H. Effects of nitrogen fertilizer source and application rates on foliar nitrogen concentration, photosynthesis, and grow th of Douglasfir. Can. J. For Res., 1981, 11: 775~ 780.
- [25] Sheriff D W, Nambiar E K S, Fife D N. Relationships between nutrient status, carbon assimilation and water use efficiency in *P inus radiata* (D. Don) needles *T ree Physiol*, 1986, 2: 73~ 88
- [26] Reich PB, Schoettle AW. Role of phosphorous and nitrogen in photosynthetic and whole-plant carbon gain and nutrient use efficiency in eastern white pine Oecologia, 1988, 77: 25~ 33.
- [27] Schaberg P G, Perkins T D, M N ulty S G. Effects of chronic low-level N additions on foliar elemental concentrations, morphology, and gas exchange of mature montane red spruce Can. J. Res., 1997, 27: 1622~ 1629.
- [28] Warren C R, Dreyer E, Adam s M A. Photosynthesis-Rubisco relationships in foliage of *P inus sy lvestris* in response to nitrogen supply and the proposed role of Rubisco and amino acids as nitrogen stores *T rees*, 2003, 17: 359~ 366
- [29] P éez-Solba M, Stulen I, Van der Eerden L J M. Effects of atmospheric ammonia on the nitrogen metabolism of Scots pine (*Pinus sy lvestris*) needles *Physiolog ia Plantarum*, 1994, **90**: 629~ 636
- [30] Clement J M A M, de Boer M, Venema J H, et al There is no direct relationship between N-status and frost hardiness in needles of NH3-exposed Scots pine seedlings Phyton., 2000, 40: 21~ 33.
- [31] GotelliN J, Ellison A M. Nitrogen deposition and extinction risk in the Northern pitcher plant, sarracenia purpurea Ecology, 2002, 83:
  2758~ 2765.
- [32] Catovsky S, Kobe R K, Bazzaz F A. Nitrogen-induced changes in seedling regeneration and dynamics of mixed conifer-broad-leaved forests *Ecological Applications*, 2002, 12: 1611~ 1625.

#### 参考文献:

- [6] 李德军,莫江明,方运霆,等. 氮沉降对森林植物的影响 生态学报, 2003, 23(9): 1891~ 1900.
- [8] 黄忠良,丁明懋,张祝平,等 鼎湖山季风常绿阔叶林的水文学过程及其氮素动态 植物生态学报,1994,18(2):194~199.
- [9] 周国逸, 闫俊华 鼎湖区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响 生态学报, 2001, 21(12): 2002~ 2012.
- [10] 刘世荣 兴安落叶松人工林生态系统营养元素生物地球化学循环特征 生态学杂志, 1992, 11: 1~6
- [11] 郝吉明, 谢绍东, 段雷, 等 酸沉降临界负荷及其应用 北京:清华大学出版社, 2001. 6
- © 1995-2005 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.