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Our results suggest that forests perform an important step for the fate of PAHs in the atmosphere.
Abstract
Leaves of six main tree species from the Pearl River Delta (PRD) in Southern China were collected to identify the interspecific variability, the
spatial variability and the seasonal variations of polycyclic aromatic hydrocarbons’ (PAHs) concentrations, and to calculate the amount of PAHs
removed by leaves. PAHs concentrations in pine needles were much higher than in broad-leaves and leaves from urban/industrial areas (Baiyun-
shan and Heshan) exhibited two times greater concentrations than leaves from the rural area (Dinghushan). Seasonal variations of PAHs in leaves
occurred with lesser concentrations in September. Leaves in PRD scavenged 3.7� 0.9 t PAHs y�1, accounting for about 10% of the total amount
emitted in this region. This result suggests that forests play an important role in the fate of PAHs.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are one class of
persistent organic pollutants, ubiquitous in the environment.
They mainly are byproducts of the incomplete combustion
of coal/petroleum and pyrolysis of organic materials. Some
PAHs are carcinogenic and/or mutagenic (Menziec et al.,
1992) and represent considerable public health hazards, there-
fore, they are being widely studied to assess their toxicity and
distribution (Alves et al., 2001; Chang et al., 2006; Hwang
et al., 2003; Lee et al., 1981; Lehndorff and Schwark, 2004).
Most PAHs are originally generated as gases and their fate
depends on their size. In general, high volatile compounds
(2- and 3-ring) remain as gases in the atmosphere and low
volatile compounds (5- and 6-ring) agglomerate into or are
adsorbed onto particles subsequently and are distributed
* Corresponding author. Tel./fax: þ86 20 3725 2708.

E-mail address: gyzhou@scib.ac.cn (G. Zhou).

0269-7491/$ - see front matter � 2008 Elsevier Ltd. All rights reserved.

doi:10.1016/j.envpol.2008.02.012
randomly (Mader and Pankow, 2002). Compounds of interme-
diate volatility (4-ring) exist in both gaseous and particle-
bound forms and the percentage of partition depending on
temperature (Bidleman, 1988; Cortes and Hites, 2000;
Pankow, 1987).

Gaseous PAHs can deposit onto tree leaves, crops or
aquatic environments via dry/wet deposition and diffusion,
thereby reducing the concentration of free pollutants in the
atmosphere and accordingly decreasing the risks of human
exposure (Bacci et al., 1990; Franzaring and Eerden, 2000;
Horstmann and McLachlan, 1998; Wania and McLachlan,
2001). The accumulation of PAHs on the vegetation depends
on various parameters: the chemical and physical properties
of the molecules such as molecular weight, lipophilicity and
aqueous solubility, the environmental conditions such as air
temperature, rainfall, and pollutant concentration in the atmo-
sphere, and the plant species which determine the physical
properties of leaves and their ability to adsorb PAHs (Barber
et al., 2002, 2004; Böhme et al., 1999; McLachlan, 1999).
Therefore, PAHs concentrations deposited on vegetation vary
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greatly across environments and plant species. Values were
reported to range from negligible concentrations to several
orders of magnitude (Hwang et al., 2003; Lehndorff and
Schwark, 2004; Liu et al., 2006; Nadal et al., 2004; Simonich
and Hites, 1994a; Smith et al., 2001; Wagrowski and Hites,
1997). In a study led over the northeastern region of USA,
Simonich and Hites (1994a) estimated that the vegetation
removed about 40% of the PAHs emitted into the atmosphere.
This percentage was later revised downward to 4% by
Wagrowski and Hites (1997) using a broader sampling, how-
ever, the role of vegetation in sequestering gaseous PAHs
should not be neglected.

Forests cover almost 50% of the Pearl River Delta (PRD)
(Editorial Committee of Forests of Guangdong, 1990). This
region has become a growing concern for air pollution over
the last two decades following a rapid urbanization and in-
dustrialization, especially PAHs emission (Fu et al., 2003).
Past studies in the region mostly took interest in the distribu-
tion of PAHs in the atmosphere, soil and water, and no inves-
tigation was led to assess their presence on plants (Fu et al.,
2003; Li et al., 2006; Liu et al., 2005a, 2006; Luo et al.,
2004; Mai et al., 2002; Wang et al., 2007). However, forests
may be important in sequestering gaseous PAHs. In this
study, we aimed at determining the PAHs accumulation ca-
pacity of different plant species from PRD and the spatial
and temporal variability of PAHs deposition on plants. Using
these information, we evaluated the amount of PAHs seques-
tered annually on plant leaves in PRD and how much this ac-
counted to total PAHs emission. We were interested in
studying the accumulation of gaseous PAHs, therefore, our
study ignored PAHs accumulation by wet and dry particle-
bound depositions.

2. Materials and methods
2.1. Site description
PRD includes nine districts that cover an area of about 4.2� 104 km2

(Fig. 1) close to the Tropic of Cancer. Annual average temperature is

21e23 �C and ranges from 13e15 �C in January to 28e29 �C in July. The

annual precipitation fluctuates between 1500 and 1800 mm with about 80%

falling during the wet season from April to September (Editorial Committee

of Forests of Guangdong, 2005).

Three sampling sites were selected to represent the various regional condi-

tions according to previous studies (Liu et al., 2006). In order to estimate PAHs

pollution over the whole region, we selected three moderately polluted sites

rather than extreme sites. Study sites included Baiyunshan (23�110N,

113�190E), an urban area spot in the north of Guangzhou city, Heshan

(22�410N, 112�540E), an industrial area spot set up in the Open Experimental

Station for Comprehensive Exploitation of Hilly Lands of the Chinese

Academy of Sciences (CAS) and Dinghushan (23�100N, 112�310E), a rural

area spot set up in the northwest of PRD at Dinghushan Forest Ecosystem

Research Station of CAS. In order to avoid the influence of point source

pollution, sampling spots were chosen away from roads and other emission

sources. Samples were collected in March, June, September and December

2006 so as to capture the seasonal variations of PAHs deposition.
2.2. Sampling method
We selected the following six tree species for our study since they are

major species in PRD (Editorial Committee of Forests of Guangdong,
1990): Pinus massoniana Lamb. (Pm), Cunninghamia lanceolata (Lamb.)

Hook. (Cl ), Eucalyptus citriodora Hook. (Ec), Acacia auriculaeformis A.

Cunn. ex Benth. (Aa), Acacia mangium Willd. (Am) and Schima superba

Gardn. et Champ. (Ss). All six species were sampled in Heshan while only

Pm and Ss were sampled in the other two sites. Each sample was made of

a mixture of many healthy and mature leaves picked with scissors at different

heights and orientations from the canopy of at least five trees per species per

site. Harvested leaves were immediately stored in polyethylene bags and car-

ried to the laboratory.
2.3. PAHs extraction and analysis
Leaves were washed with deionized water until no particles adhered to

their surfaces (Liu et al., 2005b) and then cut into 1 cm squares. Leaf squares

were freeze-dried and kept frozen at �20 �C for analysis.

Sample (5 g) mixed with 5 g anhydrous sodium sulfate was added with

a mixture (200 ppb, 5 ml) of naphthalene-d8, acenaphthane-d10, phenan-

threne-d10, chrysene-d12 and perylene-d12 as surrogate standards, and Soxh-

let-extracted with dichloromethane for 48 h. In order to eliminate the

disturbance of elemental sulfur, activated copper granules were added to the

collection flasks.

Extracts were rotary evaporated to 10 mL, then the solvent was exchanged

two times with 20 mL hexane, and they were rotary evaporated to 5 mL. Ex-

tracts were further concentrated to 1 mL under a gentle stream of nitrogen,

then purified on an 10 mm i.d. aluminum/silica/florisil column filled from bot-

tom to top with neutral silica gel (10 cm, 3% deactivated), neutral aluminum

(6 cm, 3% deactivated), neutral florisil (5 cm) and anhydrous sodium sulfate

(2 cm). The column was eluted with 70 mL of dichloromethane/hexane

(1:1). The collected fraction was concentrated to 0.5 mL under a gentle nitro-

gen steam. After that, extracts were purified on a gel permeation chromatog-

raphy (GPC) column (10 mm i.d., filled with 10 g of S-X3 Bio-beads) to

eliminate lipids. The GPC column was eluted with 80 mL dichloromethane/

hexane (1:1). The first 35 mL eluent was discarded, and the following

45 mL that contained PAHs were collected and concentrated to 0.2 mL (Liu

et al., 2005b). A known amount of hexamethylbenzene was added as an inter-

nal standard prior to GCeMS analysis.

GCeMS analysis was carried out using a GC 8000 Top and Voyager

(Finnigan-MAT) in selected ion monitoring (SIM) mode. Samples (1 mL)

were injected with a 15 min solvent delay time. The oven temperature started

down at 50 �C for 5 min and increased up to 290 �C (10 min hold time) at

a rate of 3 �C min�1. The following 15 PAHs were analyzed: acenaphthene

(Ace), acenaphthylene (DiH), fluorene (Flu), phenanthrene (Phe), anthracene

(Ant), fluoranthene (Fluo), pyrene (Pyr), benzo[a]anthracene (BaA), chrysene

(Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]

pyrene (BaP), indeno[123-cd]pyrene (Ind), dibenzo[ah]anthracene (DiB),

and benzo[ghi]perylene(BghiP).

Quality assurance and quality control were ensured using laboratory blanks

and recovery standards (Lin et al., 1999). The laboratory blanks did not show

any detectable PAHs. The mean percent recoveries were as follows: naphtha-

lene-d8: 30.3%, acenaphthane-d10: 80.6%, phenanthrene-d10: 98.8%, chrysene-

d12: 112.4%, perylene-d12: 106.2%. Final PAHs concentrations in extracts

were corrected to take into account the recoveries. Each sample was analyzed

three times and results presented below are the average values.
2.4. Measurement of lipid content and specific leaf area (SLA)
Lipids were extracted from 3 g of sample using Soxhlet-extraction with

dichloromethane/hexane (1:1) for 48 h. Extracts were concentrated, dried,

and weighed to calculate lipid contents.

SLA, the ratio of leaf surface area to dry weight, was obtained by two

different procedures depending on tree species. For broadleaved species (in-

cluding Cl ), leaf area of 50 intact random leaves per species was determined

with a light box equipped with an area meter (LI-3000A). Total area was

obtained by adding individual areas. For needle-leaf species, a representative

cluster was selected. The length and diameter were recorded and we calculated

the total surface area of the cluster as dpl, where d is the needle diameter and l



Fig. 1. Sampling locations: (C) sample locations, ( ) urban/industrial areas, ( ) rural areas.
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is the length of the needle (Wagrowski and Hites, 1997). Leaves were dried at

95 �C for 24 h prior to weighing.
2.5. Data analysis
All analyses were conducted using the SPSS 11.5 software with a¼ 0.05.

Correlations between
P

PAHs and the individual components of PAHs

were analyzed using bivariate correlations with Spearman correlation coeffi-

cients. Differences among species, seasons and sites were analyzed using

ANOVA. When significant differences existed, they were further analyzed

with the Tukey multiple comparison test. Analysis was performed either

directly on PAHs concentrations when their variances were tested as homoge-

neous or on log transformed concentrations in the other case.

Annual amounts of scavenged PAHs by forests were calculated as follows:

Scavenged PAHs¼ 1

LLS

X3

i¼1

ðFAiLAIiCiÞ ð1Þ

where LLS is the leaf life-span, i is one of three different forest types, FA is the

forest area, LAI is the corresponding leaf area index and C is the concentration

of PAHs. A detailed classification of forest types and regions is given in

Section 3.

Annual PAHs emissions in PRD were calculated using formulas that are as

follows:

Emitted PAHs¼ P
X6

k¼1

X15

j¼1

�
SourcekEFkj

�
ð2Þ

where k is one of six types of PAHs emission sources (consumptions of: coal

by power plant and industry, coal by cocking plants, domestic coal, petroleum

by transports, petroleum by non-transports, natural gas), j is one of the 15 com-

pounds of PAHs, Source is the PAH amount annually emitted by each fossil

energy consumption in Guangdong province (Editorial Committee of China

Energy Statistical Yearbook, 2007), EF is the corresponding emission factors

of PAHs (Xu et al., 2005), P is the percentage of gross domestic product (GDP)
that PRD accounted for the whole province (80%) (Editorial Committee of

Forests of Guangdong, 2005).
3. Results and discussion
3.1. Leaf PAHs concentrations

3.1.1. Interspecific variability
Flu, Phe, Fluo, Pyr and Chr were the major compounds in

the samples, accounting for about 80% of total PAHs concen-
trations, similar to atmospheric gaseous PAHs composition (Li
et al., 2004). Fig. 2 shows that the same trends occurred for
both conifers and broadleaved species. The concentrations of
Ace, DiH, Ant, BaA, BaP, Ind, BghiP, and DiB were all
very low. Ace, DiH, Ant, and BaA are susceptible to photoly-
sis (Wang et al., 2005) while BAP, Ind, BghiP and DiB mainly
exist as particles, therefore, they are little adsorbed by leaves
(Simonich and Hites, 1994b, 1995). Correlation analysis
showed that most of PAH concentration positively correlated
with one another and

P
PAHs except BghiP and DiB (Table 1).

This is consistent with results from Wagrowski and Hites
(1997) and we can conclude that kinetics for PAHs removal,
volatilization and degradation were similar for the different
tree species we studied here. No specific accumulation or met-
abolic transformation occurred.

Fig. 3 shows
P

PAHs concentrations for the various tree
species and sites. For all sites and periods, different tree spe-
cies showed different levels of accumulation of PAHs and
PAHs concentrations in pine needles were much greater than



Fig. 2. PAHs concentrations in pine needles of the three sites. Vertical bars are the standard deviation.
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in broad-leaves (P< 0.01 except Ec). Plant parameters, which
are often considered as affecting PAHs concentration in
leaves, are specific leaf area (SLA), lipid content and leaf
surface roughness (Franzaring and Eerden, 2000; Howsam
et al., 2000; Simonich and Hites, 1995). Leaves with greater
lipid content or roughness tend to adsorb more strongly gas-
eous PAHs while a greater SLA implies a larger adsorption
surface for a same leaf weight (Simonich and Hites, 1994b).

The leaf lipid contents of our six species are given in
Table 2. The highest values were found in pine needles
(152.4 mg g�1), followed by Cl and Ec while the values for
other broad-leaves were close to each other. This result corrob-
orates observations from Simonich and Hites (1994b) that
greater lipid content cause greater PAHs adsorption. However,
no correlation existed between PAHs and lipid content for spe-
cies with moderate lipid content, and even a negative correla-
tion existed for Aa. The PAHs concentration based on lipid
content was 4.2� 2.5 ng mg�1, with its variation to be much
smaller than that based on dry weight (610.2� 408.9 ng g�1)
(Fig. 4). This suggests that concentration based on lipid con-
tent can reduce the difference of inter-species greatly and
lipids play a significant role in limiting the accumulation of
PAHs in leaves although it is not the only cause of variation.

The
P

PAHs concentration based on leaf area enlarged the
difference of inter-species in accumulating PAHs. The value
(6.7� 6.4 ng cm�2) dispersed much more than based on dry
weight (Fig. 4), giving prominence to the influence of surface
character of leaves in adsorbing PAHs. Further investigation
indicated that rough (for example, Aa) or pinnate (for example,
Cl ) leaves had higher PAHs concentrations than flat and
smooth leaves for those species with comparable lipid con-
tents. This result is consistent with other study (Howsam
et al., 2000).

3.1.2. Intersite variability
PAHs concentrations observed in Baiyunshan and Heshan

were higher than in Dinghushan (Fig. 3). The average
values in pine needles were 1172.6 ng g�1 dw,
1095.1 ng g�1 dw, and 505.3 ng g�1 dw, respectively. Con-
centrations in urban/industrial areas were twice as great as
in the rural area of Dinghushan while no difference existed
between Baiyunshan and Heshan, which suggests that the
forests near pollution sources play a more important role
in adsorbing PAHs from atmosphere. This result is consistent
with studies which showed that PAHs emission sources are
mainly located in urban or industrial areas (Li et al., 2006; Si-
monich and Hites, 1995; Wagrowski and Hites, 1997; Yunker
et al., 2002). Although PAHs concentrations in leaves from
the rural area were lower than from urban/industrial areas in
PRD, differences were much smaller than in USA. There the
ratio between urban and rural areas was almost 10-fold
(Cotham and Bidleman, 1995; Wagrowski and Hites, 1997).
This may be related to the large diffusion of small factories
over the whole region, resulting in a concerning regional
contamination.

3.1.3. Seasonal variability
Fig. 3 shows that PAHs concentration in pine needles varied

with the season. We did not detect any significant changes for
broadleaved species which may be related to their lower lipid
contents that restrict PAHs adsorption. However, significant
season differences in pine needles only occurred in Ding-
hushan. Concentrations were greater in March and June and
lower in September and December while no significant differ-
ence occurred within each season. The lack of significant
seasonal variation in Baiyunshan and Heshan may be linked
to the difference of pollution sources amongst the sites. In
the rural area, point source pollutions are relatively few, and
PAHs volatilization from the polluted ground (road, contami-
nated soil, etc.) depending on temperature mainly might play
an important role. In urban or industrial areas, emission of
vehicles and industry may cover up the effect of temperature
change to some degree (Alves et al., 2001; Li et al., 2006).

In addition, the seasonal variation of PAHs concentrations
in leaves did not coincide with that in the atmosphere. Higher
PAHs concentrations were in summer in the atmosphere (Li
et al., 2006). As seeking for the reasons of the contradiction,
considering PAHs in leaves are the result of airevegetation
partition during a period of time (several weeks or several
months) (Simonich and Hites, 1994b), we retrospected to an
early period. The annual variations of temperature, relative hu-
midity and sunlight time in this region were shown in Table 3.



Table 1

Cross correlations of PAHs concentrations between 15 compounds and
P

PAHs for our samples

Ace Dih Flu Phe Ant Fluo Pyr BaA Chr BbF BkF BaP Ind BghiP Dib
P

PAHs

Ace Correlation coefficient 1.000

P value 0.000

Dih Correlation coefficient 0.624** 1.000

P value 0.000 0.000

Flu Correlation coefficient 0.783** 0.729** 1.000

P value 0.000 0.000 0.000

Phe Correlation coefficient 0.732** 0.684** 0.920** 1.000

P value 0.000 0.000 0.000 0.000

Ant Correlation coefficient 0.555** 0.633** 0.701** 0.706** 1.000

P value 0.000 0.000 0.000 0.000 0.000

Fluo Correlation coefficient 0.732** 0.521** 0.639** 0.761** 0.621** 1.000

P value 0.000 0.001 0.000 0.000 0.000 0.000

Pyr Correlation coefficient 0.801** 0.527** 0.677** 0.773** 0.496** 0.925** 1.000

P value 0.000 0.000 0.000 0.000 0.001 0.000 0.000

BaA Correlation coefficient 0.602** 0.405** 0.505** 0.658** 0.555** 0.887** 0.825** 1.000

P value 0.000 0.010 0.001 0.000 0.000 0.000 0.000 0.000

Chr Correlation coefficient 0.640** 0.453** 0.511** 0.677** 0.582** 0.920** 0.832** 0.954** 1.000

P value 0.000 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000

BbF Correlation coefficient 0.381* 0.305 0.199 0.361* 0.461** 0.755** 0.624** 0.843** 0.835** 1.000

P value 0.015 0.056 0.217 0.022 0.008 0.000 0.000 0.000 0.000 0.000

BkF Correlation coefficient 0.382* 0.307 0.208 0.361* 0.446** 0.752** 0.607** 0.834** 0.855** 0.965** 1.000

P value 0.015 0.054 0.197 0.022 0.004 0.000 0.000 0.000 0.000 0.000 0.000

BaP Correlation coefficient 0.341* 0.341* 0.128 0.248 0.481** 0.616** 0.505** 0.718** 0.733** 0.876** 0.906** 1.000

P value 0.031 0.031 0.431 0.123 0.002 0.000 0.001 0.000 0.000 0.000 0.000 0.000

Ind Correlation coefficient 0.269 0.281 0.118 0.206 0.372* 0.566** 0.438** 0.666** 0.630** 0.895** 0.867** 0.877** 1.000

P value 0.093 0.079 0.469 0.203 0.018 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000

BghiP Correlation coefficient 0.124 0.199 0.002 0.114 0.269 0.403** 0.297 0.529** 0.485** 0.784** 0.753** 0.794** 0.931** 1.000

P value 0.444 0.219 0.992 0.486 0.093 0.010 0.070 0.000 0.002 0.000 0.000 0.000 0.000 0.000

Dib Correlation coefficient 0.282 0.237 0.128 0.188 0.303 0.335* 0.338* 0.456** 0.355* 0.499** 0.373* 0.520** 0.555** 0.545** 1.000

P value 0.078 0.140 0.430 0.245 0.057 0.035 0.033 0.003 0.025 0.001 0.018 0.001 0.000 0.000 0.000
P

PAHs Correlation coefficient 0.806** 0.611** 0.751** 0.863** 0.642** 0.956** 0.941** 0.882** 0.904** 0.676** 0.688** 0.557** 0.487** 0.338* 0.308 1.000

P value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.033 0.053 0.000

** Correlation is significant at 0.01 1evel (two-tailed).

* Correlation is significant at 0.05 1evel (two-tailed).

3
1

0
X

.
T

ian
et

al.
/

E
nvironm

ental
P

ollution
156

(2008)
306e

315



Fig. 3. PAHs concentrations in leaves of the urban, industrial and rural areas of the Pearl River Delta, China, for the various species studied. Baiyunshan: urban site;

Heshan: industrial site; Dinghushan: rural site.
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Obviously, the highest temperature appears in the third season,
almost 30 �C, which could lead to more PAHs partition to the
atmosphere (Simonich and Hites, 1994b; Yamasaki et al.,
1982). At the same time, the lower relative humidity and lon-
ger sunlight hours also happened in this quarter, and all of
these factors can increase the photolysis of PAHs greatly
(Wang et al., 2005). Hence, in hot season, although PAHs
may be volatilized from contaminated ground surface (road,
water, soil, etc.), the continuous maintenance of a relative
high concentrations in the atmosphere (Li et al., 2006) for
a good time was needed to partition to the plant from the
atmosphere.

Regarding the fact that the PAHs concentration in leaves
was not in the trough in December when the PAHs content
in the atmosphere was the lowest. This was because the vege-
tationeair partition coefficient increases in winter (Simonich
Table 2

Leaf areas and lipid contents of the six species

Species Pm Cl

Lipid content (mg g�1) 152.39 115.72

Leaf area (cm2 leaf�1) 2.36 0.60

Pm, Pinus massoniana; Cl, Cunninghamia lanceolata; Ec, Eucalyptus citriodora; A
and Hites, 1994b), namely, PAHs susceptible to accumulating
to plants in the cold weather. When we monitored the atmo-
spheric quality with plants, it should be fully considered
whether the climatic conditions might induce inconsistent
PAHs concentrations between plants and atmosphere before
drawing the conclusion.
3.2. PAHs scavenging by forests
In order to properly calculate the amount of PAHs scav-
enged by forests in PRD, we had to perform the following op-
erations: (1) classifying forest types according to PAHs
concentrations in leaves; (2) dividing the region into subre-
gions depending on the contamination level; and (3) calculat-
ing the values of two important parameters: leaf area index and
leaf life-span.
Ec Aa Am Ss

103.62 70.85 87.62 74.86

33.51 22.95 75.61 20.88

a, Acacia auriculaeformis; Am, Acacia mangium Willd.; Ss, Schima superba.



Fig. 4. PAHs concentrations in leaves based on dry weight, leaf areas and lipid contents.
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3.2.1. Classifying forest types
PAHs concentrations were greater in pine needles than in

broad-leaves while little differences occurred amongst the
later. Therefore, we classified forest types into three classes:
coniferous forests, broadleaved forests and mixed forests.
These three types constitute about 75.6% of the total forested
land in PRD (Peng, 2003).
3.2.2. Classifying areas
Seasonal differences, whether they were significant or not,

exhibited the same pattern in all areas. Since the whole PRD is
subjected to the same climatic conditions, we assumed that
this pattern is consistent and could be extended to the whole
region. PAHs concentrations were not different between
Baiyunshan and Heshan where they were double of Ding-
hushan concentrations. Therefore, we divided the whole region
into two classes: urban/industrial areas and rural areas.

According to the results about PAHs concentrations in the
atmosphere in PRD (Liu et al., 2006; Wang et al., 2007), we
attributed each of PRD areas to one of the two classes defined
above as shown in Fig. 1. The urban/industrial areas were
marked dark grey, and the rural areas grayish. There may be
some pieces of clean areas in the urban/industrial areas, or
contaminated pieces in the rural areas, however, we assumed
that their overall effect was very limited and we did not con-
sider them. We did not classify the region according to the real
urban and rural areas, because an urban area may be not a con-
taminated one, such as Shenzhen, pollution is affected not only
by the industrial structure but also by the investment in pro-
tecting environment and geographical location (Hwang
et al., 2003; Liu et al., 2006; Wang et al., 2007).

PAHs concentrations for urban/industrial areas were taken
as in Heshan with 4.4� 3.1 ng cm�2 and 16.2� 3.1 ng cm�2
Table 3

Meteorologic parameters in the Pearl River Delta region during 2006

Month Temperature (�C) Relative humidity (%) Sunlight hour (h)

1e3 17.2 73.0 205.7

4e6 25.8 80.0 259.1

7e9 28.4 75.0 471.5

10e12 21.8 67.0 455.6
for broadleaved and coniferous forests, respectively. The
mean (10.3� 2.7 ng cm�2) of the two values was taken as
PAHs concentration for mixed forests (Table 4). Similarly,
rural areas’ concentrations were taken as in Dinghushan
with 7.5� 4.1 ng cm�2 for coniferous forests. Given that
only two species were measured in Dinghushan, PAHs con-
centration for broadleaved forests was calculated as half the
value of Heshan broadleaved forests considering the concen-
tration ratio in pine needles for the two sites. Accordingly,
4.9� 1.7 ng. cm�2 was calculated as the concentration for
mixed rural forests.
3.2.3. Calculating leaf area index (LAI) and leaf
life-span (LLS)

Leaf area index (LAI), the total area of leaves per unit of
land area covered by the vegetation, is an important factor
that influences regional loads of PAHs in leaves. It can be cal-
culated from SLA by multiplying this value by the estimated
leaf biomass per land surface unit. LAI values of all forest
types from the literature often differed from one region to an-
other (Ren et al., 1994; Shen et al., 2003; Zhang et al., 2004b;
Zhao et al., 2002). For example, in Dinghushan, the LAI of
broadleaved forest, pine forest and mixed forest were 17.6,
8.8 and 12.3, respectively (Ren et al., 1994), while in Heshan
the values declined to 2e4, 2.2e3.92 and 2 (Ren et al., 1994;
Zhao et al., 2002). In order to minimize errors, we took the
medians of all LAI values available in the region, which
were 3.68, 3.92 and 4 for broadleaved forest, pine forest and
mixed forest, respectively.

Leaf life-span (LLS) ranges from 8e9 months to 4e5 years
in PRD, but mainly 1e2 years for those main species we con-
sidered (Wang, 1988). The LLS of pine trees is about 1.5
years, Ss and Ec 1.5 years, Aa about 1e1.5 years, Am 1 year
and other broadleaved trees also 1e1.5 years. Only the LLS
of Cl is longer and can reach 4e5 years (Wang, 1988; Zhang
and Luo, 2004a). So we retained an LLS of 1.5 year for all
species. The amount of litter-fall varies with different species
and seasons, but the fluctuations are small (Guan et al., 2004),
hence we regarded the average of PAHs concentrations in
March, June, September and December as the annual
averages.



Table 4

Total amount of PAHs cleared by forests (with standard deviation) in the Pearl River Delta, China

Forest areas (km2) PAHs concentrations (ng cm�2) Annual removal PAHs (kg) % of PAHs emitted

Urban/industrial areas

Broadleaf 2657 4.4� 3.1 288� 198 0.8� 0.5

Needle-leaf 3117 16.2� 3.1 1323� 249 3.6� 0.7

Needleebroadleaf 461 10.3� 2.7 127� 33 0.3� 0.1

Rural areas

Rural broadleaf 5737 2.2� 1.5 311� 218 0.9� 0.6

Rural needle-leaf 7450 7.5� 4.1 1458� 808 4.0� 2.2

Rural needleebroadleaf 1631 4.9� 1.7 211� 73 0.6� 0.2
P

21,052 3718� 899 10.2� 2.5
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3.2.4. Amount of PAHs scavenged by forests
We calculated that about 1.7� 0.3 t PAHs y�1 and 2.0�

0.8 t PAHs y�1 were removed from the atmosphere by the
forests from urban/industrial and rural areas, respectively, for
a total of 3.7� 0.9 t PAHs y�1. As mentioned before, the
main PAHs compounds in leaves were Flu, Phe, Fluo, Pyr
and Chr. Given the percentage they accounted in

P
PAHs, we

calculated their individual amounts removed by forests as:
200� 50 kg Flu y�1, 1200� 300 kg Phe y�1, 600� 150 kg
Fluo y�1, 700� 200 kg Pyr y�1 and 550� 150 kg Chr y�1,
respectively.

We calculated that the annually emitted PAH amount was
36.6 t y�1 in PRD. Phe, Fluo and Flu were the top three, ac-
counting for 53% of the total emission (Fig. 5).

Comparing the amount of PAHs removed by forests with
that emitted by sources, we found that the removal ratio of
Chr was the highest (41%), followed by Pyr and Flu (about
20%). The emission of high ring PAHs compounds is moder-
ate, whereas their removal amounts are only little for the lim-
itation of accumulation in leaves. However, high ring PAHs
compounds mainly take part in particles and vegetation reduce
wind speed efficiently, which is propitious to the deposition of
particles. Therefore, forests might play an important role in the
deposition of high ring PAHs (McLachlan and Horstmann,
1998; Smith and Jones, 2000; Wania and McLachlan, 2001).

PRD forests in our simulation absorbed about 10% of total
yearly PAHs emissions in 2006. Although our study ignored
other forms of vegetation such as grasses and crops, the ratio
of absorbed PAHs emission by the vegetation in PRD is still
Fig. 5. Yearly amount of PAHs emitted in Pearl River Delta. Abbreviations: ace

anthracene (Ant), fluoranthene (Fluo), pyrene(Pyr), benzo[a]anthracene (BaA), ch

[a]pyrene (BaP), indeno[123-cd]pyrene (Ind), dibenzo[ah]anthracene (DiB), and b
larger than in the northeastern USA (Wagrowski and Hites,
1997). This difference is probably due to the difference of
the vegetation, PAHs concentrations in the atmosphere and re-
gional climate. From our results, we can conclude that greater
forest coverage near pollution sources, greater percentage of
coniferous forests and lower regional temperatures are factors
that increase PAHs sequestration by forests.

The PAHs removed by plants are degraded by biotic and
abiotic process in forest soil and only a small part re-volatil-
izes into the atmosphere. Most of the compounds in forest
soils are adsorbed by the soil organic matter which reduces hu-
man exposure (Simonich and Hites, 1994b; Wang et al., 2005).
Forests perform an important process, concentrating gaseous
PAHs into the soil and, therefore, probably accelerating their
degradation (Simonich and Hites, 1995; Smith et al., 2001;
Wania and McLachlan, 2001).

Given the limited number of sampling sites and samples we
used, the simplification of residence time in leaves and leaf
area index and the uncertainty of emission factors, the present
evaluation is only a rough estimate. Precise calculation needs
more detailed information.

4. Conclusion

PAHs concentrations were greater in pine needles than in
broad-leaves. Flu, Phe, Fluo, Pyr, and Chr were the five dom-
inant PAHs compounds. Tree species showed variable abilities
to sequester PAHs and their ability could be explained by the
differences in leaf cuticle lipid contents and leaf surface areas.
naphthene (Ace), acenaphthylene (DiH), fluorine (Flu), phenanthrene (Phe),

rysene (Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo

enzo[ghi]perylene (BghiP).
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Trees from urban/industrial areas concentrated in their leaves
twice as more PAHs than trees growing in rural areas. The
PAHs concentration in leaves varied with seasons but these
variations were not consistent with PAHs variations in the
atmosphere. The lowest leaf concentrations were observed in
September and these were probably related to higher temper-
atures and longer days at this time, which led to high photol-
ysis. We estimated that forests scavenged around 3.7� 0.9 t
PAHs y�1. About 10% of PAHs emitted in PRD were absorbed
from the atmosphere by forests.
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