浙江大学学报(农业与生命科学版) 33(3): 328~337, 2007 Journal of Zhejiang University (Agric. & Life Sci.)

文章编号:1008-9209(2007)03-0328-010

鼎湖山针阔混交林生态系统外向辐射通量研究

王 旭^{1,2,3},周国逸²,孙 阁²,周传艳^{2,3},王春林²

(1. 华南热带农业大学环境与植物保护学院,海南 儋州 571737; 2. 中国科学院 华南植物园,广东 广州 510650;
3. 中国科学院 研究生院,北京 100039)

摘 要:分析了南亚热带针阔混交林各外向辐射通量:上行短波辐射(R_{su})、上行长波辐射(R_{Lu})和上行 总辐射(R_{Tu})在不同时间尺度上的分布特征、相互关系以及影响因素.研究表明:中小时间尺度(1月) 上,变异系数的大小顺序均为:R_{Lu} < R_{Tu} «R_{Su};R_{Su}在雨季和旱季的日均变化均呈规则的正态单峰曲线, 而 R_{Lu}呈波浪形,R_{Tu}则呈不规则的单峰曲线;R_{Tu}占全年进入生态系统总辐射能量的 82.93%, 而 R_{Lu}占 R_{Tu}的 97.36%,分别说明了外向辐射在系统辐射平衡中,以及 R_{Lu}在系统外向辐射中的重要影响;全年 日均反射率 为 8.30%,月均反射率(y)与降雨量(x)的回归方程为: y = -0.385ln x + 9.3376, R^2 = 0.6762,相关性达显著水平.在日尺度,影响 的主要因素可能是下垫面湿润程度的不同;对 R_{Lu}与各层 次温度进行的多种函数拟合表明,第2层(9 m)气温最能代表该系统的"真实表面温度",而在应用 Stefar-Boltzmann 方程时必须根据实际情况进行校正,否则会产生较大的误差;在较大时间尺度(1月) 上,净辐射(R_n)与 R_{Tu}和 R_{Lu}相关性较好,R_n 与 R_{Su}的相关性表达显著水平.而在较小时间尺度(1d) 上,R_n 与 R_{Su}相关性较好,且时间尺度越小,R_n 与 R_{Su}的相关性越好,这充分说明了以往辐射平衡研究中 往往忽略的尺度效应的影响.

关 键 词:南亚热带;针阔混交林;外向辐射通量;尺度效应 中图分类号: P422.9 **文献标识码**: A

WANG Xu^{1,2,3}, ZHOU Guo-yi², SUN Ge², ZHOU Chuan-yan^{2,3}, WANG Chun-lin² (1. College of Environment and Plant Protection, South China University of Tropical Agriculture, Danzhou, Hainan 571737, China; 2. South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; 3. Graduate University, Chinese Academy of Sciences, Beijing 100039, China)

Study on outside radiation flux of coniferous and broad-leaved mixed forest ecosystem at Dinghushan in south China. Journal of Zhejiang University (Agric. & Life Sci.), 2007,33(3):328-337

Abstract: The characters of outside radiation fluxes of coniferous and broad-leaved mixed forest were studied, including the distribution of upwelling shortwave radiation (R_{Su}) , upwelling longwave radiation (R_{Lu}) , upwelling total radiation (R_{Tu}) , and the relationship between these components and the environmental factors. The major results were as follows: At middle and small temporal scales (1 month), the coefficient of variation (CV) of outside radiations fluxes were $R_{Lu} < R_{Tu} \ll R_{Su}$. In wet and

收稿日期: 2006-03-30

基金项目:国家重点基础研究发展规划资助项目(2002CB111503);国家自然科学基金面上资助项目(30470306);海南省重点 科技计划资助项目(05102);华南热带农业大学博士启动基金资助项目.

作者简介:王 旭(1977 →),男,博士,主要从事生态系统生态学、森林水文学方面的研究. Tel: 0898-23301064; E-mail: wxdick @scib.ac.cn.

通讯作者:周国逸,男,博士生导师,首席研究员,主要从事生态系统生态学、森林水文学方面的研究. E-mail: gyzhou @scib. ac.cn.

dry season, the average diurnal processes of R_{Su} presented normal peak type curves, the processes of R_{Lu} presented undee curve, however the R_{Tu} presented anomalous peak type curves. Among the total energy input to the ecosystem, R_{Tu} was the largest fraction (82.93%), which indicated that outside radiation fluxes were very important to the energy balance of ecosystem. In the total upside energy, R_{Lu} was the largest fraction (97. 36 %), proving that R_{Lu} was more important than R_{Su} which was disagreed with the usually considering. The average daily reflect coefficient () was 8.3%. The regression equation between monthly (y) and precipitation x was: $y = -0.385 \ln x + 9.3376$, $R^2 = 0.6762$. The main factor which influences daily might be precipitation. The regression analysed between R_{Lu} and temperatures, including air temperatures of different height and canopy infrared temperature of the forest ecosystem, indicated that the second layer air temperature (9 m high) had the most closely related to the true surface temperature. The being using Stefan-Boltzmann equation must be revised. In a longer temporal-scale (1 month), for example, there existed very obvious correlation between monthly R_n and monthly R_{Lu} , monthly R_n and monthly R_{Tu} . However, the correlation between R_n and R_{Su} , was not significant. In a shorter temporal-scale (1 d), this correlation is significant, it seems that the shorter the temporalscale is, the better the correlation between R_n and R_{Su} is, indicating that the influence of temporal-scale can't be ignored in research of radiation balance.

Key words: lower subtropical China; broad-leaved mixed forest; outside radiation fluxes; scale effect

地表辐射平衡是小气候形成的物理基础,是 土壤 - 植被 - 大气连续体各组分间能量交换的 重要组成部分,一直是生态学和气象学研究的重 点[1].然而长期以来,研究者多着眼于生态系统 所获得的能量、主要考察太阳辐射和净辐射的变 化[2-4],未充分考虑到下垫面在接收外部辐射的 同时,也在不停地通过反射和自身长波辐射,能 动而深刻地影响着周围的环境[5-6].在以往的研 究中,受观测技术的限制,包括下垫面上行长波 辐射在内的某些辐射分量往往采用经验方程和 相关模型进行估算[78]、缺乏长期、系统的定位观 测资料[911].近年来,尽管随着观测方法的改进, 对下垫面的外向辐射开展了一些研究,但这些研 究或着眼于地--气复合系统这样较大的空间尺 度[12-13].或以农田、沙漠等结构相对简单的生态 系统作为研究对象[14-15],而对于森林生态系统的 外向辐射特征还未见系统的报道.

作为中国生态研究网络(Chinese Ecology Research Net, CERN)的主要成员之一,近年 来,中国科学院鼎湖山森林生态系统定位研究 站设置了微气象观测塔,依托先进的观测设施, 对包括外向辐射通量在内的小气候因子进行了 较系统、全面的定位观测,以期对南亚热带森林 生态系统的能量状况及小气候形成机制研究提 供参考.本文是 2003 年全年的观测结果.

2

1 研究地概况

鼎湖山地处广东省肇庆地区境内,位于北 纬 23 90,东经 112 34.本区大面积是丘陵和 低山,海拔在 100~700 m间. 气候属南亚热带 季风湿润型气候,冬夏气候交替明显,年平均温 度 21 ,最热月在 7月,最冷月 1月.林区多年 平均降雨量为 1900 mm,4~9月为雨季,3~10 月为旱季,年平均蒸发量为 1115 mm,年平均 相对湿度为 82 %.

鼎湖山森林植被是南亚热带地带性植被的 典型代表,保存了森林群落演替过程中不同阶 段的3个群落类型,其中气象观测塔所在的林 分处于针阔混交林演替后期,叶面积指数 (LAI)平均值为4.00,LAI变动范围为:3.73~ 4.17,优势树种为马尾松(Pinus massoniana)、 山钓樟(Lindera metcalfiana)、锥栗 (Castanopsis chinensis)和黄果厚壳桂 (Cryptocarya concinna).

2 研究方法

2.1 辐射通量的测定和计算 常规气象观测设施(Routine Meteorological

Measurement System,RMMS)安装于 38 m高 的气象观测塔上,地上部分分为 7 层,其中在第 7 层分别采用 KIPP & ZONEN 公司的 CNR-1 辐射仪测定上行短波辐射(Upwelling shortwave radiation, R_{su})、上行长波辐射 (Upwelling longwave radiation, R_{Lu})、下行短 波辐射(Downwelling shortwave radiation, R_{sd})和下行长波辐射(Downwelling shortwave radiation, R_{Ld}),本处上行、下行分别指由地面 指向天空和由天空指向地面,其中上行辐射即 为森林生态系统的外向辐射.采用数据采集器 (CR10X, Campbell)进行数据记录,所有数据 均为 0.5 h 平均值.

由边界层辐射传输理论^[16]可知,净辐射 (Net radiation, R_n)为:

 Rn = (R_{Sd} + R_{Ld}) - (R_{Su} + R_{Lu}).
 (1)

 上行总辐射通量为:
 (2)

2.2 反射率的计算

反射率()是生态系统辐射状况的重要 指标,计算公式为:

$$= \mathbf{R}_{\mathrm{Su}}/\mathbf{R}_{\mathrm{Sd}}\,. \tag{3}$$

2.3 其他气象因子的测定

在气象观测塔第1层(4 m),第2层(9 m),第3层(15 m),第4层(21 m),第5层(27 m),第6层(31 m)和第7层(36 m)分别测定该 层次的气温(HMP45C,VAISALA),并在第4 层测定冠层红外温度(IRTS-P,APOGEE),在 第7层测定大气降水(52203, R.M. Young).

2.4 上行长波辐射的计算

上行长波辐射难以直接测量,常常通过 Stefan-Boltzmann 方程计算^[17]:

 $\mathbf{R}_{\mathrm{L}\mu} = T_0^4. \tag{4}$

式中,为下垫面表比辐射率,由下垫面性 质决定;为 Stefan-Boltzmann 常数, = 5.67 × 10^{-8} W•m⁻²•K⁻⁴, T_0 为以开氏温标计量的 下垫面辐射温度(真实表面温度).在下垫面性 质大致相似的情况下, R_{Lu} 主要由 T_0 决定^[18].

3 结果与分析

3.1 外向辐射通量在小时间尺度上的变化

从 0.5 h 尺度上外向辐射通量的变化(表 1) 可以发现: 就辐射分量的平均值、最大值和 最小值等指标来看大小顺序均为:R_{Tu} > R_{Lu} ≫ Rsu,其中 RTu与 RLu的值较接近,就全年平均值 而言后者是前者的 97.38%, 变动范围在 85.41%~100%之间,说明外向辐射主要由长 波辐射构成: 最大值均出现在 7~8 月的中午 时段,即:12:30~14:00; RLu和 RTu的最小值 均出现在1月8日2:30,而Rsu的最小值为0, 出现在夜间和凌晨(18:00~7:00),这可能是因 为针阔混交林生态系统作为灰体,其外向短波 辐射均来源于对太阳短波辐射的反射,夜间无 太阳辐射,故 R_{su}也为 0; 就变异系数 (coefficient of variation, CV)而言,在各辐射 分量中,CV的大小依次是:RLu(0.07) < RTu $(0, 08) \ll R_{Su}(1, 11)$.

表1 小时间尺度(1 d)上的外向辐射通量
-----------	--------------

				1		
项目	0.5 h 尺度/ (W•m ⁻²)		1 d 尺度/ (MJ•m ⁻² •d ⁻¹)			
	上行短波辐射 R _{Su}	上行长波辐射 R _{Lu}	上行总辐射 R _{Tu}	上行短波辐射 R _{Su}	上行长波辐射 R _{Lu}	上行总辐射 R _{Tu}
平均值	11. 32	420.56	431.88	0. 98	36.34	37. 31
变异系数	1. 110	0.070	0. 077	0. 511	0. 080	0. 082
最大值	80.10	504. 20	568. 22	1.88	41. 05	42. 69
出现时间/(月-日)	08-13,13:30	08-04,14:00	07-15,12:30	05-30	08-04	07-15
最小值	0. 00	322. 60	324. 56	0. 08	29. 15	29. 33
出现时间/(月-日)	18:00~7:00	01-08,2:30	01-08,2:30	09-03	01-07	01-16

Table 1 Outside radiation flux in short temporal-scale (1 d)

从外向辐射通量的日总量变化(表 1)可以 看出: 各种辐射分量的大小顺序与 0.5 h 尺

-7

度相同,其中 RLu占 RTu的 95.00%~99.78% 之间,这说明在日尺度上二者更为接近; RLu 和 R_{Tu} 的最大值出现日期与 0.5 h 尺度的情况 相同,而 R_{Su} 则出现在 5 月; R_{Lu} 和 R_{Tu} 的最小 值均出现在 1 月,而 R_{Su} 的最小值却出现在雨 季(9 月),并且与下行短波辐射出现最小值的 日期不一致,可见下垫面对短波辐射的反射能 力在日尺度上有很大差异; 就 CV 而言,在各 辐射分量中, CV 的大小顺序仍然为: R_{Lu} (0.080) < R_{Tu} (0.082) 《 R_{Su} (0.511),长波辐射 的 CV 远小于短波,这可能是因为针阔混交林 系统的温度相对较稳定,所发射的长波辐射变 异也较小.而 R_{Su} 受太阳高度角和下垫面状况 的影响,一年中变异很大.0.5h 尺度和日尺度 上的 R_{Lu} 和 R_{Tu} 的 CV 均十分接近,而 0.5 h 尺 度上 R_{Su} 的变异更大.

3.2 外向辐射通量的月平均值变化

由外向辐射诵量的月平均变化(图1)可以

Fig. 1 Distribution of monthly ouside radiation flux

2

看出: 3种辐射的月均通量曲线均呈单峰形, 并于7月达到最大值,其中,R_{Tu}和 R_{Lu}趋势较 为一致,均呈较规则的单峰曲线,而 R_{Su}则略有 不同,峰形不明显; R_{Tu}、R_{Lu}于1月达到最小 值,然而 R_{Su}于3月达到最小值; 月均通量的 顺序为 R_{Tu}(432.31 W•m⁻²) > R_{Lu}(420.95 W• m⁻²) \gg R_{Su}(11.36 W•m⁻²), R_{Tu}与 R_{Lu}接近而 远大于 R_{Su}; CV 的顺序是: R_{Lu}(0.057) < R_{Tu} (0.075) \ll R_{Su}(1.920),与小时间尺度的顺序 相同.

3.3 外向辐射通量在不同季节的日变化

3.3.1 外向短波辐射通量在不同季节的日变 Rsu在不同季节的日均变化均呈较规则 ſŁ. 的正态单峰曲线(图 2),且白昼为正,夜间和凌 晨接近 0 通量,并且均于 13:00 达到旱季(3~ 10月)和雨季(4~9月)的最大值,分别为 36.07 W•m⁻²和 37.66 W•m⁻².旱季和雨季不 同之处在于: 旱季 R_{su}的平均值(11.14 W· m⁻²)和最大值(36.07 W·m⁻²)略小于雨季的 平均值(11.67 W·m⁻²)和最大值(37.66 W· m⁻²),分别是后者的 95.40 %和 95.78 %,这可 能是因为在雨热同季的鼎湖山地区,旱季下行 短波辐射小于雨季.作为反射辐射的 Rsu 也相 应减小. 然而旱季夜间和凌晨的值则明显大干 雨季,其原因也许是旱季晴朗的夜晚较多,远方 恒星所发射的少许短波辐射达到地面,而雨季 则较少; 旱季清晨通量开始急剧上升的时间 比雨季要延滞 0.5 h, 而傍晚开始在 0 通量附近 波动的时间则要提前 0.5 h.

Fig. 2 Comparison of daily average fluctuation of outside radiation flux between different seasons

3.3.2 外向长波辐射通量在不同季节的日变 化 RLu在不同季节的日均变化均呈波浪形, 其不同之处在干: 旱季长波辐射的平均值 (395.15 W·m⁻²)、最大值(410.44 W·m⁻²)和 最小值(382.65 W·m⁻²)均远小于对应的雨季 长波辐射,分别为446.89 W•m⁻²、463.93 W• m²和 433.24 W•m²,前者分别是后者的 88. 42 %、88. 47 %和 88. 32 %. 这可能是因为在 雨热同季的鼎湖山地区,旱季针阔混交林生态 系统温度较雨季低。相应地其外向辐射的能力 也弱: 旱季 R_L,达到最小值的时间(7:00)比 雨季延滞1h,而达到最大值的时间(14:30)则 延滞 0.5 h. 前者可能是因为旱季日出时间晚, 清晨系统温度最低的时间也相应较晚. 而至于 后者的原因还有待干讲一步研究...

3.3.3 外向总辐射通量在不同季节的日变化 RTu作为 RSu和 RLu叠加的结果,其在不同季节 的日均变化呈不规则的单峰曲线 不同季节的

17.07%

◎ 净辐射

3.4 外向辐射通量的年总量特征

进入针阔混交林生态系统的全年总入射辐 射(图 3)为 16447.2 MJ•m⁻²,其中, R_n 仅占 17. 07 % (2807. 9 M J• m⁻²), R_{Tu} 为 13639. 4 MJ•m⁻²,占 82.93%.由此可见,太阳辐射中的 绝大部分通过系统自身的长波辐射和短波辐射 返回到系统外部.而上行总辐射中,RLu占了绝 大部分 ,为 97. 36 % (13279. 6 MJ • m⁻²) .Rsu 仅 占 2, 64 % (359, 7 MI • m⁻²)

A: 总入射辐射分配: B: 上行辐射构成. 图 3 针阔混交林生态系统全年辐射分配

Fig. 3 Annual distribution of radiation in broad-leaved mixed forest ecosystem

3.5 上行辐射与环境因子的关系

A

82.93%

3.5.1 反射率的变化及其影响因子 森林 生态系统由于温度较低,本身并不发射短波辐 射,其短波辐射来源于对太阳下行短波辐射的 反射,而反射率()则是表征下垫面反射能力的 重要指标^[19].2003年日均 为 8.30 %,最大值 (25.69%)出现在4月10日,略低于红柳沙丘 (27.9%)而远小于流动沙丘(42.6%)^[20].日均 最小值(5.38%)出现在6月15日,全年月均 变化不规则(图 4A),最大值(10.11%)出现 在 12 月,最小值(6.88%)出现在 5 月.月均 为 7.90%,小于同地带的马尾松人工林 (13.4%)、南亚热带季风常绿阔叶林(11.4%)

和马占相思人工林(10.6%)^[21]. 在较大时间 尺度上的变化主要受太阳高度角和下垫面粗糙 度的影响,由于4种林分地理位置接近,太阳高 度角基本相同,故决定 的主要因素是下垫面 性质,与鼎湖山针阔混交林相比,后3种林分结 构简单,粗糙度低,所以反射率更高.

从 2003 年月平均 (y) 与降雨量(x) 的相关 关系(图 4B)可以看出, $y = -0.385 \ln x + 9.3376$, $R^2 = 0.6762$, P = 0.0454 < 0.05, 相关性达显著水 平.可见在月尺度上反射率与降雨量之间存在明 显的负相关关系,鼎湖山针阔混交林旱季 为 8.7%,明显大于雨季的7.1%也反映出这样的 关系,全年相邻两天 最大可相差 18%,由于短

时间尺度上,太阳高度角、地形、植被层次、群落结构等基本不发生变化,可见在较小的时间尺度

上,影响 的主要因素可能是天气状况,特别是 大气隆水所引起的下垫面湿润程度的不同。

A:反射率的年变化; B:反射率与降雨量的关系. **图 4 月平均反射率及其与降雨量的关系**

Fig. 4 Relationship of precipitation and monthly average reflectivity

3. 5. 2 上行长波辐射与各层次温度的关系 对鼎湖山针阔混交林上行长波辐射(y)与各层 次气温及冠层红外温度(x)分别进行的多种函 数拟合(表 2)表明: 线性函数、指数函数、幂 函数和 4 次方幂函数的相关性均达极显著水 平,且决定系数 R² 0.9697; 分别就各类函 数的决定系数进行比较,发现第 2 层气温与 RLu的 R² 最大,这说明位于林内的第 2 层气温 最能代表混交林生态系统的"真实表面温度", 而冠层红外温度所拟合方程的 R² 列第 2 或第 3,且其幂函数并非 Stefar-Boltzmann 方程的标

准形式,说明鼎湖山针阔混交林作为一个结构 复杂的生态系统,其外向辐射面并不仅局限于 冠层,而是一个多层次的不规则面.对于这样的 生态系统,冠层红外温度并不等于其"真实表面 温度",甚至偏差较远; 在同种温度所拟合的 各类方程中,直线回归方程的 *R*² 最小,而指数 函数和幂函数则十分接近,说明除用理论方程 的幂函数形式进行 RLu的推算外,经验方程形 式的指数函数可能也是一种选择,其标准形式 也许为:

$$R_{Lu} = A e^{0.014 T_0} . (5)$$

Table 2 Relationship between upwelling longwave radiation (y) and different temperature x in forest ecosystem

	线性函数	指数函数	幂函数(1)	幂函数(2)
1 层气温(4 m)	y = 5.6735 x - 1244	$y = 7.\ 2774e^{0.\ 0138x}$	$y = 5E - 08 x^{4.0298}$	$y = 6E - 08 x^4 - 3.1327$
	$R^2 = 0.9956$, $n = 16558$	$R^2 = 0.\ 9971$, $n = 16558$	$R^2 = 0.9972$, $n = 16558$	$R^2 = 0.9969$, $n = 16558$
2层气温(9 m)	y = 5.65 x - 1238.1	$y = 7.3842e^{0.0138x}$	$y = 5E - 08 x^{4.0153}$	$y = 6E - 08 x^4 - 1.6241$
	$R^2 = 0.9961$, $n = 16558$	$R^2 = 0.9975$, $n = 16558$	$R^2 = 0.9976$, $n = 16558$	$R^2 = 0.9974$, $n = 16558$
3层气温(15 m)	y = 5.7007 x - 1253.9	$y = 7.\ 0943e^{0.\ 0139x}$	$y = 4 \text{ E} - 08 x^{4.0539}$	$y = 6E - 08 x^4 - 6.0366$
	$R^2 = 0.99$, $n = 16558$	$R^2 = 0.\ 9921$, $n = 16558$	$R^2 = 0.9921$, $n = 16558$	$R^2 = 0.9919$, $n = 16558$
4层气温(21 m)	y = 5.6965 x - 1252.8	$y = 7. \ 1025e^{0.\ 0139x}$	$y = 4 \text{ E} - 08 x^{4.0516}$	$y = 6E - 08 x^4 - 6.1141$
	$R^2 = 0.9829$, $n = 16558$	$R^2 = 0.\ 9858$, $n = 16558$	$R^2 = 0.9856$, $n = 16558$	$R^2 = 0.9851$, $n = 16558$
5层气温(27 m)	y = 5.72 x - 1259.8	$y = 6.9786e^{0.0139x}$	$y = 4 \text{ E} - 08 x^{4.0686}$	$y = 6E - 08 x^4 - 8.0309$
	$R^2 = 0.9777$, $n = 16558$	$R^2 = 0.9809$, $n = 16558$	$R^2 = 0.9806$, $n = 16558$	$R^2 = 0.9801$, $n = 16558$
6层气温(31 m)	y = 5.6936 x - 1250.6	$y = 7.\ 104e^{0.\ 0139x}$	$y = 4E - 08 x^{4.0495}$	$y = 6E - 08x^4 - 6.0761$
	$R^2 = 0.9759$, $n = 14158$	$R^2 = 0.\ 9788$	$R^2 = 0.9785$, $n = 14158$	$R^2 = 0.9783$
7层气温(37 m)	y = 5.6817 x - 1247.4	$y = 7. \ 1878e^{0.\ 0138x}$	$y = 5E - 08 x^{4.0387}$	$y = 6E - 08 x^4 - 5.0125$
	$R^2 = 0.9697$, $n = 16558$	$R^2 = 0.\ 9732$, $n = 16558$	$R^2 = 0.9729$, $n = 16558$	$R^2 = 0.9722$, $n = 16558$
4 层冠层红外温度(21 m)	y = 5.5967 x - 1223.9	$y = 7.657e^{0.0136x}$	$y = 6E - 08 x^{3.9805}$	$y = 6E - 08x^4 + 2.5069$
	$R^2 = 0.9951, n = 16558$	$R^2 = 0.9958, n = 16558$	$R^2 = 0.9961$, $n = 16558$	$R^2 = 0.9958$, $n = 16558$

2

© 1994-2007 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

其中, $R_{Lu}/(W \cdot m^{-2})$ 为生态系统外向长波 辐射,A 是包含下垫面性质参数在内的常数, T_0 为以开氏温标计量的下垫面辐射温度(真实 表面温度); 所有自然拟合的幂函数方程均基 本符合 Stefan-Boltzmann 方程的形式,但其指 数在 3.9805~4.0686 之间变动,并非 Stefan-Boltzmann 方程中指数为 4 的标准形式; 为 进一步考察方程的形式,将幂函数的指数规定 为 4,则出现常数项,并在-8.0309~2.5069 之

间变动,方程的决定系数也略为下降,可见 Stefan-Boltzmann 方程所表述的只是一个可供 参考的近似形式,在应用其计算 R_{Lu}时必须根 据实际情况对方程的具体形式进行校正,否则 会产生较大的误差.

3.5.3 上行辐射与净辐射的关系 对不同 时间尺度的上行辐射/(W•m⁻²)与净辐射通 量/(W•m⁻²)进行直线回归分析(图 5),发现: 在 0.5 h 尺度上,虽然 R_n 与 R_{Lu}、R_{Su}和 R_{Tu}

图 5 外向辐射与净辐射的关系

Fig. 5 Relationship between outside radiation and net radiation

2

的相关性均达极显著水平,但其决定系数 R^2 却相差甚远,依次为: R_{Su} (0. 8913) > R_{Tu} (0. 4497) > R_{Lu} (0. 1436),说明 R_{Su} 与 R_n 的关 系十分密切; 在日尺度上,虽然 3 条回归直线 的相关性也达极显著水平,但从 R^2 来看,均不 十分理想,依次为: R_{Tu} (0. 4946) > R_{Su} (0. 4765) > R_{Lu} (0. 3838),这说明在日尺度上, R_{Tu} 与 R_n 的关系最密切; 在月尺度, R_{Su} 与 R_n 直线回归 方程的 P = 0.0524 > 0.05,不显著,与之相对应 的是其余两直线回归方程的 P = 0.001 < 0.01, 不仅达极显著水平,并且 R^2 较高,其顺序为: R_{Tu} (0. 8781) > R_{Lu} (0. 8314) > R_{Su} (0. 3264).

4 讨 论

4.1 生态系统外向辐射的重要性

现有的研究主要从系统被动地吸收外界辐射能量的角度,以太阳辐射和净辐射为主要指标考察系统的能量平衡状况^[22-24].从本研究可以看出,R_n仅占全年进入针阔混交林生态系统总辐射的 17.07%,而 R_{Tu}高达 82.93%,进入系统的辐射能量中绝大部分通过系统自身的调节(包括系统自身长波辐射和对短波辐射的反射)返回到系统外部,并且该调节作用在 0.5h、日、月和季节等不同的时间尺度都具有较明显的变化规律,由此可见,系统的辐射平衡是个能动的过程,系统的这种能量"反馈"可能是森林小气候形成的重要基础,也是森林对环境产生深刻影响的主要方式之一,而这在以往的研究中还未曾提及^[25-26].

同时,在以往下垫面辐射状况的研究中, 对反射率和 Rsu强调较多,而 RLu由于观测水平 等原因难以准确测量,故 RLu的变化规律较少 涉及^[27].本研究表明,在 RTu中,系统自身 RLu 占了 97.36%,尽管与 Rsu相比, RLu变异较小, 但其仍有独特的变化节律,并且由于所占比 例极大,微小的变化都将对系统辐射平衡产生 极大的影响,故在全球变化的背景下,当考虑下 垫面性质变化所引起的反馈时,应充分考虑植 被改变后上行长波辐射能力的相应变化以及由 此产生的对系统本身能量状况和小环境的 影响.

4.2 反射率与降雨量的关系

以往的研究表明下垫面湿润程度和反射率 之间存在某种联系,但由于影响反射率的因素 众多,故仅限于定性描述,未进行统计学意义 上的分析^[28-29].2003年月平均 (y)与降雨量 (x)的直线回归方程为: $y = -0.385 \ln x +$ 9.3376, $R^2 = 0.6762$, P = 0.0454 < 0.05,达 显著水平,可见在月尺度上,反射率与降雨量 之间存在负相关关系.鼎湖山针阔混交林旱季 (8.7%)明显大于雨季(7.1%)以及相邻两天

可相差 18%,均可反映出下垫面湿润程度对 反射率的影响.在日尺度上,太阳高度角、地 形、植被层次、群落结构等基本不发生变化, 故影响 的主要因素可能是大气降水所引起的 下垫面湿润程度的不同.

4.3 生态系统外向长波辐射的计算

对 RLu 与各层次温度进行的拟合表明:是 第2层气温而不是冠层红外温度最能代表该系 统的 '真实表面温度'",这说明作为一个多层次、 结构复杂的生态系统,针阔混交林的外向辐射 面并不仅局限于冠层,而是一个多层次交叉的 不规则面.对于这样的复杂生态系统,如何确定 并精确测量其 "真实表面温度",仍需进一步探 索^[30]:指数函数的 R² 与幂函数十分接近,甚至 大于后者,说明除用幂函数形式的理论方程进 行 RLu的推算外,作为经验方程的指数函数方 程可能也是一种选择,这需要更多观测站点的 数据进行验证:拟合的幂函数方程均基本符合 Stefan-Boltzmann 方程的形式,但并非指数为4 的标准形式,故在应用 Stefan-Boltzmann 方程 时必须根据实际情况进行校正,否则会产生较 大的误差,特别是无法确定其"真实表面温 度"时。

4.4 辐射间关系的尺度效应

以往的研究往往忽视辐射间关系中尺度效 应的影响,认为 R_n 具有与短波辐射相同的、明 显的热变化^[22,31],而根据前面的分析,这样的 说法显然不全面.在较大时间尺度(1月)上,R_n 与 R_{Tu}、R_{Lu}相关性较好,而 R_n 与 R_{Su}相关性甚 至未达显著水平.而在中小时间尺度(11) 上,R_n 与 R_{Su}相关性较好,且时间尺度越小,R_n 与 R_{Su}的相关性有越来越好的趋势.这充分说 明了尺度问题对于生态学研究的意义,脱离具体的时空尺度,抽象地探讨各生态因子之间的 联系,显然不对.

References :

- Kell W, Allen G, Eva F, et al. Energy balance closure at FLUXNET sites [J]. Agricultural and Forest Meteorology, 2002(113): 223-243.
- [2] Sinoqet H, Thanisawanyangkura S, Mabrouk H. Characterization of the light environment in canopies using 3D digitizing and image processing [J]. Annals of Botany, 1998, (82): 203-211.
- [3] Constantin J, Inclan M G, Raschendorfer M. The energy budget of a spruce forest: Field measurements and comparison with the forest-land-atmosphere model (FLAME) [J]. Journal of Hydrology, 1998 (212): 22-38.
- [4] Blanken P D, Black T A, Yang P C, et al. Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components [J]. Geophysical Resource, 1997,102(28): 915-927.
- [5] LIU De-fu, KANG Chun-li (刘德福,康春丽). Predicting heavy disasters by outgoing longwave radiation (OLR) of the earth [J]. Earth Science Frontiers(地学前缘), 2003, 10 (2): 427-425. (in Chinese)
- [6] GUO Guang-meng (郭广猛). The relationship of longwave radiation of earth and the extra fir [J]. Earth Science Frontiers(地学前缘), 2004,11(2):431-435. (in Chinese)
- [7] Riahi M A, Jumaily K A, Kamies I. Measurements of net radiation and its components in semi-arid climate of Baghdad [J]. Energy Conversion and Management, 2003(40): 509-525.
- [8] Maria J M, Scott N M, Susan L U, et al. Lighttransmission profiles in an old-growth forest canopy: Simulations of photosynthetically active radiation by using satially exlicit radiative transfer models [J]. Ecosystems,2004(7): 454-467.
- [9] CAI Xi-an, PENG Shao-lin, REN Hai, et al. (蔡锡安, 彭少麟, 任海,等.) The environment of solar radiation energy of the south-subtropical hillslope ecosystem in Heshan, Guangdong Province [J]. Journal of Tropical and Subtropical Botany(热带亚热带 植物学报), 1997, 5(1): 27-32. (in Chinese)
- [10] ZHOU Guo-yi, YU Zuo-yue, PENG Shao-lin(周国逸, 余作岳,彭少麟). A study on energy balance in three ecosystems at Xiaoliang experimental station [J].

Journal of Tropical and Subtropical Botany(热带亚热带 植物学报), 1999, 7(2):93-101. (in Chinese)

- [11] LIU Yun-fen, SONG Xia, LIU Qi-jing, et al. (刘允芬, 宋霞, 刘琪, 等). Preliminary study on surface energy flux over heterogeneous land surface in subtropics red earth hilly region [J]. Jiangxi Science(江 西科学), 2003, 21(3): 183-188. (in Chinese)
- [12] CHEN Chuang-mai, LI Ye-xin, ZHOU Wen, et al. (陈创买,李叶新,周文,等). An observation study on the radiation budget characteristics for earthatmospheric system [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni(中山大学学报:自然科学版), 2003,42(1):87-91. (in Chinese)
- [13] SU Werrying, MAO Jie-tai, JI Fei(苏文颖, 毛节泰, 纪飞). An analysis of outgoing longwave radiation characteristics for Tibetan plateau [J]. Chinese Journal of Atmospheric Sciences(大气科学), 2000, 24(3): 313-323. (in Chinese)
- [14] JI Guo-liang, HOU Xu-hong, LÜLan-zhi, et al. (季国良,候旭宏,吕兰芝,等). Characteristics of radiation budget on different underlying surfaces in the arid region [J]. Acta Energiae Solaris Sinica(太阳能学报), 2004,25(2):37-40. (in Chinese)
- [15] JI Guo-liang, MA Xiao-yan, ZOU Ji-ling, et al. (季国良,马晓燕,邹基玲,等). Characteristics of radiation budget on different underlying surfaces in the arid region [J]. Arid Meteorolgy(干旱气象), 2003, 21(3): 29-33. (in Chinese)
- [16] Alados I, Foyo M I, Olmo F J, et al. Relationship between net radiation and solar radiation for semi-arid shrub-land [J]. Agricultural and Forest Meteorology, 2003(116):221-227.
- [17] Al-Riahi M, Al-Jumaily K, Kamies I. Measurements of net radiation and its components in semi-arid climate of Baghdad [J]. Energy Conversion and Management, 2003 (40) : 509-525.
- [18] JI Guo-liang, JIANG Hao, LÜLan-zhi (季国良, 江 灏, 吕兰芝). Characteristics of longwave radiation over the Qinghai-Xizang plateau [J]. Plateau Meteorology(高原气象), 1995,14(4): 451-458. (in Chinese)
- [19] YAN Jun-hua (闫俊华). Studies on water-heat processes and frangibility of the dominating ecosystems in Dinghushan(鼎湖山主要生态系统的水热过程研究 及脆弱性初探)[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2001: 128-134. (in Chinese)
- [20] WANG Bing, CUI Xiang hui, BAO Yong hong(王 兵, 崔向慧,包永红). Characteristics of radiation and heat balance in transitional region between oasis and desert

2

337

[J]. Scientia Silvae Sinicae(林业科学), 2004,40(3): 26-30. (in Chinese)

- [21] REN Hai, PENG Shao-lin (任海,彭少麟). The studies on the environment of radiation energy of manmade forests in Heshan [J]. Ecologic Science(生态科 学),1997,16(1): 23-29. (in Chinese)
- [22] XIAO Wen-fa(肖文发). The energy balance of a stand
 [J]. Acta Ecologica Sinica(生态学报), 1992, 12(1):
 16-24. (in Chinese)
- [23] Giambelluca T W, Fox J, Yarnasarn S, et al. Dryseason radiation balance of land covers replacing forest in northern Thailand [J]. Agricultural and Forest Meteorology, 1999(95): 53-65.
- [24] Loescher H W, Gholz H L, Jacobs J M, et al. Energy dynamics and modeled evapotranspiration from a wet tropical forest in Costa Rica [J]. Journal of Hydrology, 2005(315): 274-294.
- [25] Jorg S, Dieter A. Micrometeorological conditions and canopy energy exchanges of a neotropical rain forest
 [J]. Plant Ecology, 2001(153): 231-239.
- [26] Klemm O, Chang S C, Hsia Y J. Energy fluxes at a subtropical mountain cloud forest [J]. Forest Ecology and Mangement, 2006(224): 5-10.
- [27] Hardy J P, Melloh R, Koenig G, *et al*. Solar radiation transmission through conifer canopies [J]. Agricultural

and Forest Meteorology, 2004(126): 257-270.

- [28] GUAN De-xin, JIN Ming-su, XU Hao(关德新,金明 淑,徐浩). Reflectivity of broad-leaved Korean pine forest in growing season on Changbai Mountain [J]. Chinese Journal of Applied Ecology(应用生态学报), 2002, 13(2): 1544-1546. (in Chinese)
- [29] ZHANG Yi-ping, DOU Jun-xia, YU Gui-rui, et al. (张一平,窦军霞,于贵瑞,等). Characteristics of solar radiation and its distribution above the canopy of tropical seasonal rain forest in Xishuangbanna, Southwest China [J]. Journal of Beijing Forestry University(北京林业大学学报), 2005, 27(5): 17-25. (in Chinese)
- [30] ZHANG Yi-ping, ZHAO Shuang-ju, DOU Jun-xia, et al. (张一平,赵双菊,窦军霞,等). Temporal and spatial distribution characteristics of thermal effects in a tropical seasonal rainforest in Xishuangbanna, Southwest of China [J]. Journal of Beijing Forestry University(北京林业大学学报), 2004, 26(4): 1-7. (in Chinese)
- [31] Wilson K B, Hanson P J, Baldocchi D D. Factors controlling evaporation and energy balance partitioning beneath a deciduous forest over an annual cycle [J].
 Agricultural and Forest Meteorology, 2000 (102): 83-103.