
SPECIAL FEATURE: ORIGINAL ARTICLE CO
2

flux observation in various forests of Monsoon-Asia

Uncertainty analysis in data processing on the estimation of net
carbon exchanges at different forest ecosystems in China

Min Liu • Honglin He • Guirui Yu •

Xiaomin Sun • Li Zhang • Shijie Han •

Huiming Wang • Guoyi Zhou

Received: 15 May 2011 / Accepted: 19 September 2011 / Published online: 22 December 2011

� The Japanese Forest Society and Springer 2011

Abstract Information about the uncertainties associated

with eddy covariance observations of surface-atmosphere

CO2 exchange is of importance for model-data fusion in

carbon cycling studies and the accurate evaluation of eco-

system carbon budgeting. In this paper, a comprehensive

analysis was conducted to investigate the influence of data

processing procedures, focusing especially on the nocturnal

data correction and three procedures in nonlinear regression

method of gap filling [i.e., the selection of respiration model

(REM), light-response model (LRM) and parameter opti-

mization criteria (POC)], on the annual net ecosystem CO2

exchange estimation at three forest ecosystems in China-

FLUX with three yearly datasets for each site. The results

showed that uncertainties caused from four methodological

uncertainties were between 61 and 108 g C m-2 year-1,

with 61–93 g C m-2 year-1 (21–30%) in a temperate mixed

forest, 80–107 g C m-2 year-1 (19–21%) in a subtropical

evergreen coniferous plantation and 77–108 g C m-2

year-1 (16–19%) in a subtropical evergreen broad-leaved

forest. Factorial analysis indicated that the largest uncer-

tainty was associated with the choice of POC in the regres-

sion method across all sites in all years, while the influences

of the choice of models (i.e., REM and LRM) varied with

climate conditions at the measurement station. Furthermore,

the uncertainty caused by data processing procedures was of

approximately the same magnitude as the interannual vari-

ability in the three sites. This result stressed the importance to

understand the uncertainty caused by data processing to

avoid the introduction of artificial between-year and

between-site variability that hampers comparative analysis.

Keywords ChinaFLUX � Data processing �
Eddy covariance � Net carbon exchange � Uncertainty

Introduction

Eddy covariance (EC) observations of net ecosystem CO2

exchange (NEE) have been analyzed to improve our

knowledge of mechanisms and processes associated with

the global carbon cycle (Hollinger et al. 1994; Baldocchi

2003, 2008). However, because of deficiencies in mea-

surement and simulation technologies, more attention

needs to be paid to the uncertainties inherent in these EC

observations (Hollinger and Richardson 2005; Richardson

et al. 2006; Lasslop et al. 2008; Wang et al. 2009).

Increased knowledge of uncertainties in flux data will play

a critical role in validating the use of various ecosystem

models (e.g., Thornton et al. 2002; Churkina et al. 2003),

synthesis research at multiple sites (e.g., Law et al. 2002;

Churkina et al. 2005), and extrapolating flux data from the

regional to the continental scale. However, the lack of

knowledge about possible errors and uncertainties of EC
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observation is still one of the outstanding issues to be

solved (Mauder et al. 2008).

There are different sources of uncertainties in the NEE

flux observations. Hollinger and Richardson (2005) put

forward a method for quantifying random errors in EC data

by using the paired observations at two nearby towers or at

equivalent environmental conditions in successive days.

Subsequently, many studies on random measurement error

have been carried out (Rannik et al. 2006; Richardson et al.

2006; He et al. 2010). In addition, as the EC data quality

was usually influenced by instrumentation limits and the

meteorological conditions, a series of post-field data pro-

cessing and calculation, including footprint analyzing

(Gockede et al. 2004, 2006), energy balance closure

(Wilson et al. 2002; Foken 2008), data quality control

(Foken and Wichura 1996) and gap filling (Falge et al.

2001; Ruppert et al. 2006), should be conducted before

interpreting and analyzing the ecological meaning of EC

observations. A set of data processing procedures and

software have now been formed and are widely used for

EC tower stations around the world (Reichstein et al. 2005;

Papale et al. 2006; Mauder et al. 2008). However, at

present, the method and parameter setting for each proce-

dure are not identical. There is still a high heterogeneity in

terms of quality and methods used in data processing

across sites. It has been shown that even processing

methods of internationally well-established experimental

groups can result in significantly different values (Mauder

et al. 2007). Therefore, in-depth knowledge of the impact

of data processing procedures on NEE estimation is crucial

if valid statistical comparisons are to be made across sites

or across time. The influence of coordinate rotation, storage

calculation, gap filling method selection on annual NEE

estimation are now well known (Hollinger et al. 1994; Zhu

et al. 2005; Papale et al. 2006; Moffat et al. 2007). How-

ever, the integral impact of critical data processing proce-

dures, especially for the processing of nighttime data and

the gap filling procedures, are still debatable and need

further analysis.

Forest ecosystems play an important role in global

carbon balance due to their large carbon storage and

exchange (Valentini et al. 2000; Gower 2003). It is par-

ticularly important to derive accurate estimation of the

carbon exchange of forested ecosystems. Our objective in

the present paper was to use data from three forest sites

within the ChinaFLUX network to conduct a comprehen-

sive analysis of the uncertainty of annual NEE estimation

associated with methodological uncertainties introduced by

the data processing procedures. We focused on the influ-

ences of nocturnal data correction (NDC) and nonlinear

regression method of gap filling. The uncertainty caused by

NDC was evaluated by simulating the effect of friction

velocity (u*) threshold selection on NEE determination

with a bootstrapping approach. The impacts of gap filling

strategies with nonlinear regression method were consid-

ered in three ways: (1) the selection of respiration model

(REM); (2) the selection of light-response model (LRM);

and (3) the selection of parameter optimization criteria

(POC). By conducting this analysis, we could identify the

relative influence of individual processing procedure and

examine the interaction effect of different processing pro-

cedures on annual NEE estimation.

Materials and methods

Data and processing overview

In this study, we used observed half-hourly CO2 flux and

meteorological data collected from 2003 to 2005 at three

ChinaFLUX forest sites: Changbaishan temperate broad-

leaved Korean pine mixed forest (CBS), Qianyanzhou

subtropical Pinus plantation (QYZ), and Dinghushan sub-

tropical evergreen broad-leaved forest (DHS). The instru-

ments for CO2 flux and meteorological measurements at

the three forest sites were described in Yu et al. (2006). The

characteristics of the three sites are listed in Table 1. More

detailed information at the three sites has been provided by

Table 1 Site characteristics of

the three forested CO2 flux-

tower stations in China

Site CBS QYZ DHS

Location 42�240N 26�440N 23�100N

128�060E 115�030E 112�340E

Elevation (m) 738 100 300

Canopy height (m) 26 11 15

Mean temperature (�C) 3.6 17.9 20.9

Mean annual 713 1,542 1,956

Precipitation (mm)

Dominant species Pinus koriaensis Pinus massoniana Schima superba

Tilia amurensis Pinux elliottii Engelm Castanopsis chinensis

Measurement height (m) 40 39 27
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Guan et al. (2006), Wen et al. (2006), and Zhang et al.

(2006a).

We used the ChinaFLUX flux data processing system

(Li et al. 2008) to conduct quality control of the EC data.

After a common quality checking process (triple coordinate

rotation, WPL correction, de-spike, absolute value and

storage change), fluxes with low u* during nighttime were

screened out (Reichstein et al. 2005). Data gaps were

unavoidable in long-term and continuous measurements.

Small gaps (\2 h) were linearly interpolated, while larger

gaps were filled by the nonlinear regressions method as

described in ‘‘Gap filling methods’’.

Our goal in this study was to present a comprehensive

analysis about the influence of NDC and nonlinear

regression method of gap filling on the estimation of annual

NEE. Therefore, we chose three possible u* thresholds for

each site in each year (5, 50 and 95% percentiles of u*

thresholds distribution obtained by a bootstrapping

approach) to examine the effect of uncertainty in u*

threshold determination on annual NEE estimation. We

applied two groups of simple but commonly used models

for respiration and daytime NEE and assumed two error

distributions of flux data that influence the implementation

of model parameter optimization (Gaussian and double-

exponential distribution) to illustrate the effect of gap

filling procedures(i.e., non-linear regression method) on

annual NEE estimation. In the following sections, we dis-

cuss the details of these cases and the analysis method.

Nocturnal data correction

Eddy flux measurements can underestimate the NEE dur-

ing periods with low turbulence and thus limited air mix-

ing. The friction velocity (u*) is currently used as a

criterion to discriminate low and well mixed periods, and

all data acquired during nighttime under low turbulent

conditions were dismissed based on a u* threshold criterion

(Aubinet et al. 2000). In this study, we derived the u*

threshold for each site in each year by evaluating the

relationship between temperature and CO2 flux as descri-

bed in Reichstein et al. (2005) and Papale et al. (2006).

Specifically, for the determination of u* threshold, the

dataset was split into six temperature classes of equal

sample size and, for each temperature class, the set was

then split into 20 equally sized u* classes. When the

nighttime flux reaches more than 99% of the average flux at

the higher u* classes, the threshold could be defined as the

u* class. The threshold was only accepted if, for the tem-

perature class, temperature and u* were not or only weakly

correlated (|r| \ 0.4). The final threshold was defined as the

median of the thresholds of the six temperature classes.

This procedure was applied to the subsets of four 3-month

periods to account for seasonal variation of vegetation

structure. For each period, the u* threshold was reported,

but the whole dataset was filtered according to the highest

threshold found. In cases where no u* threshold could be

found, it was set to 0.4 m s-1. A minimum threshold was

set to 0.1 m s-1 for forest canopies in this study.

The procedure was repeated 1,000 times with a boot-

strapping technique to assess the uncertainty of u*

threshold detection. In the bootstrapping procedure, a

synthetic dataset was generated by randomly selecting

n data points from the original dataset, which was itself of

size n. In each bootstrapping step, the whole year was

sampled on a half-hourly basis into a dataset with 17,520 or

17,568 data points, where each half-hour point could be

drawn several times; some of the original data points would

appear two or more times, and some of the original data

points would not appear at all. The effect of missing data

was also included since missing data are a sample with the

same probability. Because resampling was done with

replacements, each synthetic dataset would be different

from the original dataset. The advantage of the bootstrap-

ping was that parameters could be estimated without

assumptions about the normal distribution and also using

small sample sizes. The bootstrapping method can provide

a non-parametric estimate of the u* threshold uncertainty

that otherwise is hard to obtain. Bootstrapping or similar

sampling technique could provide an uncertainty estimate

of the u* threshold, which represented an important

improvement over methods just providing a point estimate

(Gu et al. 2005).

The 5 and 95% percentiles of the 1,000 bootstrapped

threshold estimates were taken as confidence interval

boundaries. And the 5, 50 and 95% percentiles were taken

as the three supposed u* thresholds to analyze the influence

of the uncertainty in u* threshold determination on annual

NEE estimation.

Gap filling methods

In this study, the half-hourly CO2 flux data gaps were filled

with the nonlinear regression method. So far, there are no

standardized nonlinear regression methods across sites

(Falge et al. 2001; Papale et al. 2006), and yet the choice of

model, or how it is fitted, may have a significant effect on

the fitted model parameters, and hence the model predic-

tions. Therefore, in this study, two REM (considering the

influence of temperature on respiration vs. considering the

influence of temperature and soil moisture together), two

LRM (i.e., the Michaelis–Menten model vs. its modifica-

tion considering the effect of water condition), and two

POC (i.e., minimizing the sum of squared deviations vs.

minimizing the sum of absolute deviations) were used to

examine the influence of gap filling strategies on NEE

prediction.
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REM

During nighttime, there is no photosynthetic uptake and

ecosystem respiration (Re) is the only source of NEE.

Temperature and soil water availability are two important

environmental variables regulating ecosystem respiration.

Here, we used two simple but commonly used models to

estimate the carbon exchange during nighttime with a

yearly interval (Liu et al. 2009). The first model was

Lloyd–Taylor (Eq. 1) which represented temperature

effects on ecosystem respiration (Lloyd and Taylor 1994).

The second one we used was a Q10 model described as a

function of soil temperature and soil moisture (‘‘Q10–Sw’’)

(Eq. 2; Reichstein et al. 2002).

Re ¼ Re;refe
E0

1
Tref�T0

� 1
Tsoil�T0

� �
ð1Þ

Re ¼ Re;refQ10 Swð Þ
Tsoil�Trefð Þ

10 Q10 Swð Þ ¼ aþ bSw ð2Þ

where Re is the ecosystem respiration (mg CO2 m-2 s-1),

Re,ref is the ecosystem respiration (mg CO2 m-2 s-1) at the

reference temperature (Tref), which is set to 15�C in this

study, i.e., 288.15 K, E0 is the activation energy, T0 is the

soil temperature when the ecosystem is equal to zero and is

kept constant at -46.02�C (i.e., 227.13 K) as in Lloyd and

Taylor (1994), Tsoil is soil temperature (�C), Sw is soil water

content (m3 m-3) at 5 cm depth, a and b are fitted

parameters. A positive value of b indicates that the tem-

perature sensitivity of ecosystem respiration increases with

increasing soil water content.

LRM

For the daytime data, the response of NEE to photosyn-

thetic photon flux densities (PPFD) was described as a

rectangle hyperbola curve known as the Michaelis–Menten

model (Eq. 3; Falge et al. 2001), with parameters fit at a

10-day time-step.

NEE ¼ aQPPFDPmax

aQPPFD þ Pmax

� Re ð3Þ

where a is the ecosystem photosynthetic photon yield

(mg CO2 lmol photon-1), QPPFD is the incident photo-

synthetic photon flux density (lmol photon m-2 s-1), Pmax

is the maximum photosynthetic rate (mg CO2 m-2 s-1), Re

is the daytime ecosystem respiration (mg CO2 m-2 s-1).

The modification of the Michaelis–Menten model took

into account the vapor pressure deficit (VPD) limitation of

gross primary production (GPP) (‘‘Michaelis–Menten–

VPD’’; Eq. 4). The parameter Pmax in Eq. 3 was replaced

with an exponentially decreasing function for Pmax at high

VPD (Lasslop et al. 2010):

Pmax ¼
Pmax0 exp �k VPD� VPD0ð Þð Þ; VPD [ VPD0;

Pmax ¼ Pmax0; VPD\VPD0:

(

ð4Þ

The VPD in the atmosphere is used here. Pmax0 is the

maximum photosynthetic rate that was not limited by VPD

(mg CO2 m-2 s-1), k is the response of the maximum

carbon uptake to VPD, and VPD0 is set to 10 hPa when

optimizing the model parameters.

Parameter optimization criteria

Model parameter estimation can be described as varying the

parameters until the best fit between model and data is found

(Lasslop et al. 2008). The characteristic of the random flux

error is the foundation of the implementing the model

parameter optimization. Most models fitting to date had been

based on the optimization criteria of ordinary least square

method by minimizing the sum of squares, which can yield

the maximum likelihood estimation when the random mea-

surement error is normally distributed and homoscedastic

(Richardson and Hollinger 2005). However, there is evi-

dence that errors associated with eddy flux observation are

better represented by a double-exponential distribution than

a normal (Gaussian) distribution (Hollinger and Richardson

2005; Hagen et al. 2006; Richardson et al. 2006; Liu et al.

2009; He et al. 2010). In order to demonstrate the influence of

the parameter optimization method on annual NEE, we

performed an analysis with the two types of regression

models of respiration and daytime NEE, considering in each

case both an underlying Gaussian and an underlying double-

exponential distribution.

We altered our assumption of how the error is distrib-

uted by specifying the form of the cost function (Fc) that is

minimized in the optimization routine. When assuming a

Gaussian error distribution, we minimized the usual least

squares error function (LS; Eq. 5). In the case of the

double-exponential distribution assumption, we minimized

the absolute deviations (AD; Eq. 6), based on the recom-

mendation of Richardson and Hollinger (2005).

FC LS ¼
XN

i¼1

jyi � ypredj
ri

� �2

ð5Þ

FC AD ¼
XN

i¼1

jyi � ypredj
ri

� �
ð6Þ

where yi is the measured data, ypred is the model prediction,

ri is the standard deviation of the random errors.

Given the fact that there are very few sites where two

adjacent towers can simultaneously measure fluxes for the

same ecosystem in ChinaFLUX, we used the daily-differ-

encing approach as described by Hollinger and Richardson
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(2005) and Richardson et al. (2006) to quantify the random

flux errors. Specifically, a measurement pair (x1, x2) was

considered valid only if both measurements were made under

‘‘equivalent’’ environmental conditions (i.e., PPFD within

75 lmol m-2 s-1, air temperature within 3�C, and wind

speed within 1 m s-1) in the same successive 2 days. The

daily-differenced paired fluxes ((x1 - x2)/
ffiffiffi
2
p

) was used to

express the inferred random flux error, and the error distri-

bution and standard deviation (r) for each site in each year

could be calculated. With the daily-differencing method, it

was observed that random flux errors vary among sites. We

found that the standard deviations of the random flux error

exhibit distinct seasonal patterns in three forested sites.

Meanwhile, the standard deviation for random flux errors in

QYZ during the study period (r = 0.203 mg CO2 m-2 s-1)

was larger than that in CBS (r = 0.135 mg CO2 m-2 s-1)

and DHS (r = 0.119 mg CO2 m-2 s-1), which was of

comparable magnitude to what has been estimated in

AmeriFlux sites (Richardson et al. 2006).

Uncertainty analysis

To quantify the uncertainty caused by four processing

procedures considered in this study (i.e., NDC, REM, LRM

and POC), the following steps were conducted:

In step 1, the yearly datasets were filtered with three u*

thresholds obtained in the section of NDC. There were

three datasets corresponding three u* thresholds for each

site in each year. After that, eight combinations of gap

filling procedures described in section of gap filling method

(two LRM, two REM and two optimization methods) were

used to fill the data gaps in each dataset, and 24 sets of

complete time series of NEE were produced. Twenty-four

annual NEE were estimated for each site in each year by

summing the complete time series of NEE.

In step 2, the resulted 24 annual NEE obtained with dif-

ferent combinations of the correction and gap-filling meth-

ods were used as indicators of the methodological variability

to analyze the effect of different processing method on the

annual balance. In order to analyze the influence of single

procedure on annual NEE, we split the 24 annual NEE into

two or three groups according to the option of each proce-

dure. There were 8 or 16 repetitions for each option of each

procedure. Based on these repetitions, we considered the

averaged value as the resulted annual NEE from the specified

option of the procedure. We characterized the uncertainty of

each procedures on annual NEE estimation by the maximum

deviation of the mean annual NEE of groups for each single

processing procedure to provide a clear quantitative infor-

mation about the effect on the annual budget.

In step 3, analysis of variance was used to quantify the

comprehensive influence of different procedures on the

estimations of annual NEE. By this analysis, we could

identify the relative influence of individual processing

procedure and examine the interaction effect of different

processing procedures on annual NEE estimation.

Results and discussion

Uncertainty of u* threshold values and its influence

on NEE

By bootstrapping the annual datasets, we obtained the

probability distribution and uncertainty of u* thresholds

(Fig. 1). For three yearly datasets for each site, the

potential u* threshold were generally normally distributed,

and the 90% probability of the distribution could be con-

sidered as the confidence interval. Figure 2 demonstrates

the estimated 90% confidence intervals for u* threshold

values at the three forest sites, which varied between 0.14

and 0.33 m s-1. Note that the u* thresholds were different

across sites, with low values and uncertainty in QYZ and

high values and uncertainty in DHS. This variability could

be related to the characteristic of the site, such as canopy

structure that affects the capacity of the eddies to penetrate

in the forest, and topography that is one of the factors

responsible for advection (Papale et al. 2006). Further

analysis are needed to better understand the variability in

the u* threshold between sites.

The u* correction had been applied to nighttime data in

this study. However, there is still a debate on this, with part

of the scientific community that applied the u* correction

to daytime and nighttime data (Papale et al. 2006). The

amount of data removed by u* correction varied across all

sites and years as depicted in Table 2. The ‘‘missing’’

column indicated the percentage of missing NEE values

with data not measured or deleted due to evident technical
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Fig. 1 The distributions of the u* threshold with bootstrapping

approach for each site in each year
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problems and spike detection. The three ‘‘u*’’ columns in

Table 2 were the percentage of additional removal of data

acquired under stable conditions according to the three

thresholds used. A 10.9–22.0% of the annual data was

excluded by the u* correction, and the difference of the

amount of data filtered by different u* threshold was

1.2–2.6%.

As the u* correction had been applied to only night-

time data, the absolute magnitude of the effect of u*

correction on annual NEE was equal to that on nighttime

NEE. We found that the influence of NDC on the annual

sum of NEE for all datasets analyzed here was

14.8 g C m-2 year-1 on average, ranging from 5.8 to

22.4 g C m-2 year-1 (Fig. 3), while the estimated value

presented by Papale et al. (2006) was 40 g C m-2 year-1.

The difference could be related to the range of the 5 and

95% percentiles, while the u* threshold at three forested

sites in this study was 0.14–0.33 m s-1, smaller than

those reported in eight sites in Europe (0.1–0.7 m s-1). It

could also be seen in Fig. 3 that the annual NEE esti-

mation decreased with increasing u* threshold as expected

at QYZ and DHS. It could be explained by the fact that

the observed carbon fluxes increased under high turbu-

lence conditions, which implied that the magnitude of the

valid nighttime fluxes increased with the u* threshold, i.e.

high annual respiration and low NEE. In contrast to the

decreasing trend with increasing u* threshold in QYZ and

DHS, the relationship between the u* threshold and

annual NEE showed an increasing tendency in CBS. The

increasing tendency in CBS may related to that reported

in Zhang et al. (2005), in which the result showed that

nighttime NEE decreases, even negative, with increasing

wind speed when u* [ 0.25 in CBS. When we used these

data excluding the higher u* threshold to fill the ecosys-

tem respiration, a lower annual respiration and a higher

NEE is produced.

Impacts of the gap-filling procedures

Influence of REM

The uncertainty caused by REM on annual NEE varied

across sites, ranging from 1.8 g C m-2 year-1 at DHS and

18.3 g C m-2 year-1 at QYZ (Fig. 4). This uncertainty

was significantly correlated with the environment condi-

tions of the tower station. For example, the highest
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Fig. 2 The 5, 50 and 95% percentiles of the u* threshold distribution

determined by the bootstrapping algorithm for the three yearly

datasets at three sites

Table 2 Percentage of net

ecosystem CO2 exchange data

that were missing and excluded

by u* correction for three

forested sites from ChinaFLUX

during 2003–2005

Missing percentage of data not

measured or deleted due to

evident technical problems and

spike detection; u* additional

data removed due to low u*
conditions according with the

three different u* threshold

during nighttime; Total the

percentage of data removed

summing missing data and u*
50%

The two numbers in italic are

the percentages of nighttime and

daytime, respectively, for each

site in each year. All the

percentages are relative to the

year

Site_year Missing u* 5% u* 50% u* 95% Total

CBS2003 35.3 23.5 14.7 15.5 16.4 50.8 39.0

11.8 11.8

CBS2004 43.4 26.2 12.6 13.3 14.0 56.7 39.5

17.2 17.2

CBS2005 41.7 26.7 10.9 11.6 12.4 53.3 38.3

15.0 15.0

QYZ2003 31.9 21.3 19.8 20.7 21.6 52.6 42.0

10.6 10.6

QYZ2004 31.9 22.3 20.4 21.2 22.0 53.1 43.5

9.6 9.6

QYZ2005 34.2 22.8 19.4 20.1 20.6 54.3 42.9

11.4 11.4

DHS2003 44.6 25.8 14.0 14.9 16.0 59.5 40.7

18.8 18.8

DHS2004 54.5 30.4 11.3 12.2 13.1 66.7 42.6

24.1 24.1

DHS2005 37.8 23.1 12.4 13.7 15.0 51.5 36.8

14.7 14.7
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uncertainty of REM occurred in QYZ during 2003, largely

due to a severe drought occurred during the summer of

2003 (Liu et al. 2005). The effect of the drought stress on

CBS and DHS was not as apparent as that on QYZ due to

the abundant rainfall and mild temperature (Zhang et al.

2006b).

Furthermore, when the soil water availability effect was

not included in the respiration modeling, the resultant

annual NEE magnitude was smaller than that obtained

from the model considering water effect except for CBS in

2005, QYZ in 2003 and DHS in 2003, where the changes

were in the opposite direction (Fig. 4). This could be

related to the drought stress in the first half year of 2005 in

CBS, the summer of 2003 in QYZ and the year-end of 2003

in DHS. The performance of the two REM varied from site

to site. Regardless of the optimization criterion used, the

performance of REM was equivalent among different sites

(see Table 3, exemplary for the CBS site in 2003), while

for QYZ with perennial summer drought, especially an

abnormal drought in 2003, the fit was significantly

increased by considering the effect of water availability on

ecosystem respiration.

Influence of LRM

By grouping the 24 results of annual NEE datasets according

to the LRM into two class, we could calculate the uncertainty

of annual NEE that caused by LRM selection as the difference

of the averaged value of each class. The result showed that,

for the three yearly datasets of the three sites used in this

study, the uncertainty caused by LRM on annual NEE esti-

mation was 3.5–23.6 g C m-2 year-1, with 7.8–13.2 g C

m-2 year-1 in CBS, 4.4–7.3 g C m-2 year-1 in QYZ and

3.5–23.6 g C m-2 year-1 in DHS (Fig. 4).

It was possible to see that when the VPD effect was

not included in a light-response curve (i.e., Michaelis–

Menten), the resultant annual NEE magnitude were smaller

than that from the model considering VPD effect (i.e.,

Michaelis–Menten–VPD). The decrease of NEE magnitude

could be caused by a limitation of GPP due to stomatal

closure at high VPDs (Lasslop et al. 2010). Meanwhile,

regardless of the optimization criterion used, the modified

Michaelis–Menten model considering VPD performed

better than the original Michaelis–Menten model (see

Table 4, exemplary for the QYZ site in 2003, day of year:

181–190), with higher value of R2 and root mean squared

error (RMSE) when including VPD in the model. It implied

that including a VPD limitation of daytime carbon

exchange in the model improved the ability of the model to

reproduce the carbon exchange condition. The results also

showed that the Michaelis–Menten model during gap fill-

ing might underestimate the annual NEE magnitude, and

the model including VPD could eliminate the clear sys-

tematic bias.

As the effect of model selection for gap filling on

annual NEE estimation could be considered as the dif-

ferent simulations of the missing data, it was possible to

expect that the uncertainty due to light response selection

increased with the increasing of the percentage of missing
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Fig. 4 Effects of four factors on the estimation of annual net ecosystem

CO2 exchange (NEE). a Total estimation and bias of annual NEE, b Bias

introduced by different processing procedures on annual NEE. NDC the

influence of the determination of u* threshold for nocturnal data

correction (the results from 95% u* threshold minus that from 5% u*
threshold), REM the influence of respiration model (the results from

Q10–Sw minus that from Lloyd–Taylor model), LRM the influence of

light-response model selection (the results from the Michaelis–Menten–

VPD model minus that from the Michaelis–Menten model), POC the

influence of parameter optimization criteria (the results from absolute

deviation criteria minus that from ordinary least squares criteria)
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daytime data. For example, for DHS in 2004, the relative

higher effect might be associated with the higher per-

centage of missing daytime NEE data, which was 24.1%

compared with 9.6–18.8% in other sites and years (see

Table 2).

Influence of parameter optimization criteria

The use of absolute deviation in the cost function was sug-

gested previously by Richardson et al. (2006). Here, we used

both least squares and absolute deviations to illustrate the

effects of parameter estimation and model prediction. For

our studied sites in different years, the choice of the opti-

mization criterion (LS vs. AD) not only influenced the fitted

model parameters but also the resultant model predictions

(Tables 3 and 4). We compared model fit and model pre-

dictions using the two pairs of respiration and LRM. The

results showed that the uncertainty caused by POC on annual

nighttime NEE estimation (40.8–74.0 g C m-2 year-1) was

higher than that on daytime annual NEE estimation

(0.9–13.5 g C m-2 year-1). Meanwhile, the modeled

annual sum of NEE was always higher (37–76 g C

m-2 year-1) with the least squares criterion compared with

the absolute deviation (Fig. 4), mainly resulting from the

bias in the ecosystem respiration (90–168 g C m-2 year-1).

This could be related to the missing data percentage during

nighttime and daytime. Up to 70% of nighttime data was

missing after u* correction, while the missing percentage for

daytime data was usually below 40% (see Table 2).

The RMSE of AD increased compared to that of LS,

while the mean absolute error (MAE) decreased, which

was related to the optimization criterion (Tables 3 and 4).

Furthermore, even with the similar model performance (R2,

RMSE and MAE), the two optimal criteria lead to different

parameter sets, which then led to different model predic-

tion. For example, for the Lloyd–Taylor model in

CBS2003 (Table 3), the optimal LS parameters were

Re,ref = 0.2772 mg CO2 m-2 s-1, E0 = 389.93 K. In

contrast, the absolute deviation of model parameters had

lower values of Re,ref (0.2572 mg CO2 m-2 s-1) and

Table 3 Estimates of the parameters of respiration for CBS in 2003, described by the Lloyd–Taylor and Q10–Sw model with different parameter

optimization criteria with observations filtered by 50% u* threshold

Re,ref

(mg CO2 m-2 s-1)

E0 (K) or a b R2 RMSE

(mg CO2 m-2 s-1)

MAE

(mg CO2 m-2 s-1)

Lloyd–Taylor

Least square criteria 0.2772 389.93 0.58 0.0942 0.0581

Absolute deviation criteria 0.2572 439.23 0.58 0.0953 0.0563

Q10–Sw

Least square criteria 0.2689 3.89 -2.2661 0.58 0.0951 0.0589

Absolute deviation criteria 0.2508 4.65 -6.5832 0.57 0.0968 0.0559

RMSE root mean squared error, MAE mean absolute error

Table 4 Estimates of the parameters of the carbon exchange during daytime for QYZ, 2003, day of year: 181–190, described by the Michaelis–

Menten and Michaelis–Menten–VPD models with different parameter optimization criteria

a
(mg CO2 lmol photon-1)

Pmax or Pmax0

(mg CO2 m-2 s-1)

k Re

(mg CO2 m-2 s-1)

R2 RMSE

(mg CO2 m-2 s-1)

MAE

(mg CO2 m-2 s-1)

Michaelis–Menten

Least

square

criteria

0.0019 1.0568 0.2642 0.83 0.1051 0.0805

Absolute

deviation

criteria

0.0016 1.0225 0.2232 0.83 0.1060 0.0799

Michaelis–Menten–VPD

Least

square

criteria

0.0014 1.8078 0.0276 0.2364 0.85 0.0987 0.0737

Absolute

deviation

criteria

0.0015 1.5849 0.0013 0.2240 0.86 0.0990 0.0722

VPD vapor pressure deficit, RMSE root mean squared error, MAE mean absolute error
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higher values of E0 (439.23 K). Note that, by now, there

was not a uniquely defined, unambiguously optimal

parameter set. In fact, what is meant by ‘‘optimal’’ in this

context was somewhat subjective (e.g., Gupta et al. 1999;

Richardson et al. 2010). The equifinality of the parameter

optimization may be an important aspect in considering the

difference in model prediction.

Comprehensive analysis of the data processing

procedures

The annual NEE obtained with the different combinations of

the four procedures (i.e., NDC, REM, LRM and POC) was

used as indicators of the methodological variability to ana-

lyze the effect of the different procedures on the annual bal-

ance as illustrated in Fig. 4. In the lower panel, the ranges of

annual NEE due to each single method were shown, while the

upper panel plotted the mean annual NEE with an error bar

indicating minimum and maximum values obtained for each

site in each year. Looking at the annual NEE, it is possible to

see that the uncertainties caused from four methodological

uncertainties were between 61 and 108 g C m-2 year-1 and

the relative uncertainty in general between 16 and 25%,

except for CBS in 2004 where it was about 30%. The

uncertainty caused by data processing procedures was of

approximately the same magnitude of the interannual vari-

ability in the three sites. This result stressed the importance to

understand the uncertainty caused by data processing to avoid

the introduction of artificial between-year and between-site

variability that hampers comparative analysis. Moreover, the

POC in nonlinear regression method had the strongest impact

on the NEE estimation, with an effect on the annual NEE of

average 49.7 g C m-2 year-1. QYZ in 2004 and DHS in

2004 were the sites with the highest parameter optimization

effect on the annual NEE (QYZ 2004, 75.6 g C m-2 year-1;

DHS 2004, 59.9 g C m-2 year-1), while for other sites like

QYZ 2003 it was small.

To understand the relative role of different processing

procedures in the total uncertainty, an analysis of variance

was performed using the 24 annual NEE resulting for each

site in each year (Fig. 5). The main source of uncertainty

was confirmed to be POC for all sites in all years, the

average effect of POC on annual NEE was 88.7%, range

from 72.3% in QYZ2003 and 97.8% in DHS2005, while the

effect of NDC, REM and LRM were 3.2, 3.7 and 3.9%,

respectively. It was possible to see that the influence of

NDC was relative stable among different sites in different

year, which could be related to the small variability of the

data percentage that was filtered with three u* thresholds,

while the variability of selection of REM and LRM were

greater. This result indicated that the influence of optimi-

zation method and u* filtering on annual NEE were some-

what intrinsic, and the influence of REM and LRM varied

with the specific climate conditions of the site. Another

important aspect was that the interaction effects between

any two processing methods were very low, so that the four

procedures seem to be independent from each other.

Conclusions

In this paper, we investigated the effects of data processing

procedures, focusing especially on the NDC and three

procedures in the nonlinear regression method of gap filling

(i.e., the selection of REM, LRM and POC), on the annual

NEE estimation at three forest ecosystems in ChinaFLUX

with three yearly datasets for each site. The uncertainties

caused by four processing procedures were between 61 and

108 g C m-2 year-1 with relative uncertainty in general

between 16 and 25%. The main source of uncertainty was

the determination of POC, accounting for an average effect

of 88.7% on annual NEE. The influence of NDC was rel-

ative stable among all sites in all years, while the variability

of selection of REM and LRM were greater according to the

data missing percentage and climate condition. Moreover,

we could conclude that the influence of NDC and POC on

annual NEE were stable and intrinsic, while the influences

of respiration and LRM varied with the specific conditions

of the tower site. The results stressed the importance of

making full knowledge of the specific conditions of the EC

tower site and choosing the suitable procedures during EC

data processing to avoid the introduction of artificial

between-year and between-site variability that hampers

comparative analysis.
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The integral uncertainties during post-field data pro-

cessing should be considered in any statistical analysis,

process model evaluation, and model data fusion based on

EC observation. Future work is needed to combine the

potential uncertainty sources under a common framework,

so that the total uncertainty of flux observation and esti-

mation might be more accurately specified.
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