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a b s t r a c t

The effects of elevated carbon dioxide (CO2) and nitrogen (N) addition on foliar N and phosphorus (P)
stoichiometry were investigated in five native tree species (four non-N2 fixers and one N2 fixer) in open-
top chambers in southern China from 2005 to 2009. The high foliar N:P ratios induced by high foliar N
and low foliar P indicate that plants may be more limited by P than by N. The changes in foliar N:P ratios
were largely determined by P dynamics rather than N under both elevated CO2 and N addition. Foliar N:P
ratios in the non-N2 fixers showed some negative responses to elevated CO2, while N addition reduced
foliar N:P ratios in the N2 fixer. The results suggest that N addition would facilitate the N2 fixer rather
than the non-N2 fixers to regulate the stoichiometric balance under elevated CO2.

Crown Copyright � 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Nitrogen (N) and phosphorus (P) are fundamental nutrients for
plant growth. They are commonly limited for primary production
and other ecosystem processes (Vitousek and Howarth, 1991;
Vitousek et al., 2010). Foliar N and P concentrations can reflect plant
and soil nutrient status (Vitousek et al., 1995; Townsend et al.,
2007), and be related to the functioning of plants and vegetation
composition (Koerselman and Meuleman, 1996; Güsewell, 2004).
Foliar N:P ratios are determined by the uptake and losses of N and P.
The variations in foliar N:P ratios vary with species and depend on
nutrient conditions to which plants are exposed (Güsewell, 2004).
Foliar N:P ratios have been proved to be useful to assess N versus P
limitation to primary production in terrestrial ecosystems with
a growing focus on ecological stoichiometry (Finzi et al., 2004;
Reich and Oleksyn, 2004; Han et al., 2005; Townsend et al., 2007).

Atmospheric carbon dioxide (CO2) concentration has increased
globally by approximately 35% since the industrial revolution, and
is predicted to reach 700 ppm by the end of this century (Houghton
et al., 2001). A number of studies have revealed that elevated CO2
012 Published by Elsevier Ltd. All
can greatly affect plant nutrient concentrations and cause an
elemental imbalance in plants (Loladze, 2002; Finzi et al., 2004;
Johnson et al., 2004; Nguyen et al., 2006). Elevated CO2 does not
promote nutrient uptake at the same rate as dry matter accumu-
lation, and consequently, causes the nutrient dilution in tissues
(Cotrufo et al., 1998; Loladze, 2002). A frequently observed effect of
elevated CO2 is a decrease in plant N concentration, despite the
diversity of the experimental systems and plant species studied
(Cotrufo et al., 1998; Larsen et al., 2011). Due to growth dilution,
there were several observations on reductions in P in tissues due to
elevated CO2 where P was apparently not a limiting factor (Norby
et al., 1986; Johnson et al., 1997). The effect of elevated CO2 on P
nutrition is, however, challenged by the evidence that fixed C in
belowground under elevated CO2 may lead to increases in P release
and uptake from the soils (Lagomarsino et al., 2008; Lukac et al.,
2010). These findings led to the speculation that P concentration
in tissues could not be significantly influenced by elevated CO2
(Johnson et al., 2004). The changes in foliar N and P by elevated CO2

may lead to a shift in foliar N:P ratios. On the contrary, the stoi-
chiometric flexibility in foliar N:P ratios may affect ecosystem
production and decomposition processes, and then influence N and
P cycles in natural ecosystems (Wang et al., 2010). Therefore, our
understanding of foliar N and P stoichiometry in response to high
rights reserved.
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Table 1
Repeated-measures ANOVA for effects of carbon dioxide (C) and nitrogen (N)
treatments, sampling time and their interactions on foliar N, foliar phosphorus (P)
and foliar N:P ratio of five tree species grown under various CO2 and N treatments.
Asterisks indicate that the effects of primary factors or their interactions are
significant (*P < 0.05, **P < 0.01). No significance is shown with ns.

Species C N C*N Time Time*C Time*N Time*C*N

Foliar N A. acuminatissima ns * ns ** ** ns ns
C. hystrix ns * ns ** ns ns ns
O. pinnata ns * ns ns ns ns ns
S. hancei * * ** ** * ns ns
S. superba ns ns ns * ns ns ns

Foliar P A. acuminatissima ns ns ns ** ** ** **
C. hystrix ns ns ns ** ns ns ns
O. pinnata ns ** ns ** ns ns ns
S. hancei ** * ns ns ns ns ns
S. superba ns ns ns * ns ns ns

Foliar
N:P ratio

A. acuminatissima ns ns ns ** ns ns **
C. hystrix ns ns ns * ns ns ns
O. pinnata ns ns ns * ns ns ns
S. hancei ** ns ns ns ns ns ns
S. superba * ns * ** * * *
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CO2 can help us to understand N and P cycling under the global
change.

The atmospheric deposition of N-containing compounds has
grown over the past years due to human activities (Matson et al.,
2002). N enrichment has been considered to greatly affect ecosys-
tems in response to elevated CO2 due to the strong couplingbetween
C and N cycles (Norby et al., 1999; Luo et al., 2004; Liu et al., 2011a).
Progressive N limitation develops if elevated CO2 causes C and N to
sequester into long-lived plant biomass and soil organic matter
pools, while N limitationmight be alleviatedwhen the sequestrated
N is compensated by additional N supply (Luo et al., 2004). If N
limitation is removed, other nutrients, particularly P, will become
limited to plant growth under the condition of elevated CO2 (Aerts
and Chapin, 2000). Thus, foliar N and P stoichiometry would be
better used as an index to reflect the shift betweenNandP limitation
to ecosystems under elevated CO2 together with N addition.

Until recently, most studies of foliar N and P stoichiometry in
response to elevated CO2 have been conducted in temperate forests,
which are often limited by N. Compared with the temperate
ecosystems, tropical forests that are generally recognized as N rich
but P-poor, will respond differently to increasing N deposition
(Matson et al., 1999). It is unclear that with the increasing N
deposition, how foliar N and P stoichiometry responds to elevated
CO2 in the tropics and subtropics. In this study, we used open-top
chambers to study the effects of elevated CO2 alone and together
with N addition on foliar N and P stoichiometry in five native and
widely spread tree species in subtropical ecosystems over 5 years
after the treatments began. Our objectives were to examine: (1)
how foliar N and P stoichiometry in the tree species would respond
to elevated CO2; (2) how the responses of foliar N and P stoichi-
ometry in tree species to elevated CO2 would be altered by N
addition; and (3) the differences between N2 fixers and non-N2
fixers in response to elevated CO2 and N addition.

2. Material and methods

2.1. Study site and experimental setup

The study was conducted at South China Botanical Garden, Chinese Academy of
Sciences, Guangzhou, China (23�200 N and 113�300 E). The area has a typical south
subtropical monsoon climate with an average annual relative humidity of 77%. The
annual precipitation ranging from 1600 mm to 1900 mm has a distinct seasonal
pattern, with about 80% of it falling in the wet season (from April to September) and
20% occurring in the dry season (from October to March). The mean annual
temperature is 21.5 �C, and the mean annual total solar radiation reaches
4.37e4.60 GJ m�2 in the visible waveband.

Ten open-top chambers were built for this experiment, whichwere located in an
open area to receive full light and rain. The open-top chamber and the experiment
design have been described in detail elsewhere (Liu et al., 2008). From April 2005,
the chambers were exposed to different treatments. Briefly, three chambers
received an elevated CO2 (ca. 700 mmol mol�1) and high N treatment (NH4NO3

applied at 100 kg N ha�1 yr�1) (CN), three chambers received an elevated CO2

treatment (without any N fertilizer application) (CC), two chambers received high N
treatment (with ambient CO2) (NN), and finally two chambers acted as a control
(with ambient CO2 and no N fertilizer application) (CK). Soils in all chambers were
collected from a nearby evergreen broadleaved forest. One- to two-year-old seed-
lings were transplanted in the chambers without damaging the roots. Each chamber
was planted with eight seedlings for each of the following six species: Acmena
acuminatissima (Blume) Merr. et Perry (A. acuminatissima), Castanopsis hystrix J. D.
Hooker et Thomson ex A. De Candolle. (C. hystrix), Ormosia pinnata (Lour.) Merr.
(O. pinnata), Pinus massoniana Lamb. (P. massoniana), Schima superba Gardn. et
Champ. (S. superba) and Syzygium hancei Merr. et Perry (S. hancei). The total 48
seedlings were randomly located in each chamber. These species are native, and the
most widely spread tree species in southern China. O. pinnata is a N2 fixer and the
other tree species is non-N2 fixers. As trees were growing fast, one tree per species
was harvested at the end of each year to avoid excess crowd in each chamber.

2.2. Sample collection and measurement

As P. massoniana died in the second year of this experiment, we only studied the
other five species in our experiment, which are A. acuminatissima, C. hystrix,
O. pinnata, S. hancei and S. superba. From 2005 to 2009, one tree for each species in
each chamber was randomly chosen to be harvested for sampling at the end of each
year. All the leaves on a harvested tree were pooled together for one sample.

Leaf samples were dried for 72 h at 70 �C in an oven and then finely ground prior
to N and P analyses. Foliar N concentration was determined using the Kjeldahl
method (Bremner and Mulvaney, 1982). Foliar P concentration was measured
photometrically after leaves were digested with nitric acid (HNO3). Mass foliar N:P
ratio was used in our study.

2.3. Data analysis

Data analyses were carried out using the SPSS software. Analyzed data consisted
of foliar N, foliar P and foliar N:P ratio. Variable normality and residual homosce-
dasticity were checked. We chose a equal to 0.05. Repeated-measures ANOVA was
used to examine the effects of elevated CO2 and N addition on foliar N, foliar P and
foliar N:P ratios over the time. Subsequently, the effects were further analyzed using
ANOVA, followed by Tukey multiple comparison test when they were significant for
each sampling time. Additionally, in order to examine the major drivers of shifts in
foliar N:P ratios, we used the response ratio (RR) to calculate the relationships of the
RR of foliar N:P ratiowith the RR of N or P under elevated CO2 or N addition. RR is the
ratio of the variable in the experimental group to that in the control group (Hedges
et al., 1999).

3. Results

3.1. Foliar N

The effect of sampling time on foliar N in the tree species was
significant, except for O. pinnata, on which the effect of sampling
time was close to a statistically significant level (P ¼ 0.077)
(Table 1). The average concentration of foliar N across all species
was 15.0 mg g�1, ranging from 8.0 mg g�1 to 30.8 mg g�1. For the CK
treatment, foliar N ranged from 9.0 mg g�1 to 26.9 mg g�1 with an
average of 14.9 mg g�1. Among the species, O. pinnata showed the
significantly highest foliar N as compared with the other species.

Elevated CO2 had a significantly negative effect on foliar N in
A. acuminatissima and S. hancei in the first year of the experiment,
which showed the lowest values in the CC treatments (Fig. 1).
However, elevated CO2 did not significantly affect foliar N in the
other non-N2 fixers over the time (Table 1). Foliar N in O. pinnata
showed a positive response to elevated CO2, but the differences did
not arrive at a significant level. N addition significantly increased
foliar N in all the species, except for S. superba, in which foliar N
showed little response to N addition (Table 1).

The interaction of elevated CO2 and N addition only significantly
affected foliar N in S. hancei, with the highest value in the CN
treatment but the lowest one in the CC treatment.
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Fig. 1. Foliar nitrogen (N) concentrations (mg g�1) of five tree species exposed to the various CO2 and N treatments for five years. Error bars represent standard deviation. Different
lowercase letters denote significant differences between treatments in each year for each species. n ¼ 3 for the CC and CN treatments, and n ¼ 2 for the CK and NN treatments. CK,
Ambient CO2 þ Ambient N; NN, Ambient CO2 þ High N; CC, Elevated CO2 þ Amibent N; and CN, Elevated CO2 þ High N.
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3.2. Foliar P

There was a significant effect of sampling time on foliar P in all
tree species, except for S. hancei (Table 1). Foliar P across all species
was in the range of 0.30 mg g�1 to 1.49 mg g�1, with an average of
0.65 mg g�1. The average foliar P in the CK treatment was
0.57 mg g�1. O. pinnata showed the significantly greatest foliar P
among the five tree species (Fig. 2).

Foliar P in all tree species generally showed an increasing trend
in response to elevated CO2, while this positive effect was only
significant in S. hancei. For S. hancei, the differences between the
treatments arrived at a significant level in 2009, with significantly
higher foliar P in the CC or CN treatment than in the CK treatment
(Fig. 2). For A. acuminatissima, the effect of elevated CO2 differed
with the sampling time. Elevated CO2 significantly reduced foliar P
in A. acuminatissima in 2005, but significantly increased it in 2008
(Fig. 2). We found that N addition had a significantly positive effect
on foliar P in O. pinnata or S. hancei (Table 1), with the greatest
values in the CN treatment. As for A. acuminatissima, a positive
effect of N addition on foliar P occurred in 2008 (Fig. 2), with the
significantly higher value in the CN treatment than in the other
treatments.

The significantly interactive effects of elevated CO2 and N
addition on foliar P were only found in A. acuminatissima in 2006
and 2008.

3.3. Foliar N:P ratios

Sampling time significantly affected foliar N:P ratios in all tree
species, except for S. hancei. Across all the species, foliar N:P ratios
varied from 9.4 to 48.1, with an average of 23.5. The mean value of
foliar N:P ratios in the CK treatment was 26.2. The values of foliar
N:P ratios also significantly varied with the tree species, with the
highest one in O. pinnata.

Elevated CO2 significantly decreased foliar N:P ratios in S. hancei
over the time. Foliar N:P ratios in A. acuminatissima and C. hystrix
were showed a decreasing trend when exposed to elevated CO2,
with the lowest values in the CC treatment. However, the same
trend did not apply to that in O. pinnata. As for S. superba, a signif-
icantly negative effect of elevated CO2 on foliar N:P ratios was
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Fig. 2. Foliar phosphorus (P) concentrations (mg g�1) of five tree species exposed to the various CO2 and N treatments for five years. Error bars represent the standard deviation.
Different lowercase letters denote significant differences between treatments in each year for each species. n ¼ 3 for the CC and CN treatments, and n ¼ 2 for the CK and NN
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observed in 2005 and 2009, with the lowest values in the CC
treatment (Fig. 3). N addition exerted little effects on foliar N:P
ratios in the non-N2 fixers over the time (Table 1). As for the N2
fixer, foliar N:P ratio showed no response to N addition at the
beginning of this experiment. However, when considering the time
from 2007 to 2009, foliar N:P ratios in O. pinnatawere significantly
reduced by the N addition.

The interactive effect of elevated CO2 and N addition on foliar
N:P ratios occurred in some tree species at different sampling
times, such as A. acuminatissima in 2006, or S. superba in 2006 and
2009.

3.4. Major drivers of shifts in foliar N:P ratios

For all species pooled together, the responsive ratio (RR) of foliar
N:P ratio was significantly related to the RR of foliar P rather than
the RR of foliar N under elevated CO2 or N addition (Fig. 4). The
shifts of foliar N:P ratio in each species in response to elevated CO2
or N addition were largely driven by foliar P. The RR of foliar N:P
ratio was weakly associated with the RR of foliar N under elevated
CO2 or N addition in each species (Fig. 4a, b). However, the RR of
foliar N:P ratio was significantly negatively correlated with the RR
of foliar P under elevated CO2 or N addition in each species, except
for S. hancei, in which the negative relationship between the RRs of
foliar N:P ratio and foliar P under elevated CO2 was close to
a significant level (P ¼ 0.085) (Fig. 4c, d).

4. Discussion

4.1. General pattern of foliar N and P stoichiometry

Foliar N, foliar P and foliar N:P ratios were generally significantly
affected by the sampling time. One sampling campaign therefore
was rather limited to draw any reliable conclusion on foliar N and P
and their stoichiometry. During the five years of the experiment,
averaged foliar N across all species in the CK treatment
(14.9 mg g�1) was higher when compared with the leaves in
worldwide evergreen plants reported by Aerts (1996) (13.7 mg g�1

for foliar N, 1.02 mg g�1 for foliar P), while foliar P in the CK
treatment (0.57 mg g�1) was quite lower. These differences were
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probably attributed to considerable atmospheric N deposition
(56 kg N ha�1 yr�1 for the wet N deposition), which led to high N
availability, and low soil available P (2.13 mg kg�1 for 0e20 cm) in
our region (Liu et al., 2008). Foliar N and foliar P were both lower
than those of broadleaves of evergreen woody plants in China
reported by Han et al. (2011) (16.7 mg g�1 for foliar N and
0.99 mg g�1 for foliar P). This is probably due to the different
sampling seasons.Wet season, which has higher soil temperate and
moisture than dry season, can facilitate the release of N and P
through high decomposition (Deng et al., 2010) and generate
relatively high foliar N and P. However, foliar N:P ratios in this area
were quite high. This might reflect that plant growth at our site is
much more limited by P than by N as foliar N:P ratios are often
suggested to infer potential N- or P- limitation of terrestrial net
primary productivity (Koerselman and Meuleman, 1996; Güsewell,
2004; Reich and Oleksyn, 2004; Townsend et al., 2007).

Foliar N, foliar P and foliar N:P ratios varied significantly with
the tree species, indicating different requirements of N and P, and
different abilities of competing for N or P among the species
(Güsewell and Koerselman, 2002). Our results showed that
O. pinnata, as a N2 fixer, had the highest foliar N, foliar P and foliar
N:P ratios. The high foliar N in O. pinnata was consistent with the
results from other surveys and experiments (Townsend et al.,
2007; Nardoto et al., 2008; Alvarez-Clare and Mack, 2011;
Inagaki et al., 2011; Liu et al., 2011b), suggesting that legumes
generally have an “N-demanding lifestyle” (McKey, 1994). N2 fixers
can invest N into P acquisition (Houlton et al., 2008), which results
in relatively high foliar P. It has been reported that N2 fixers often
have higher N:P ratios than co-occurring non-N2 fixers (Güsewell
et al., 2003).

4.2. Effects of elevated CO2 on foliar N and P stoichiometry

Foliar N or P is generally reduced by elevated CO2 because of
nutrient dilution through accumulation of non-structural carbo-
hydrates in elevated CO2 (Poorter et al., 1997; Cotrufo et al., 1998;
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Güsewell, 2004; Norby and Iversen, 2006; Teng et al., 2006).
However, this phenomenon did not apply to our study. Our results
showed that foliar N was little affected by elevated CO2, while foliar
P exhibited a positive response to elevated CO2. N or P dilution due
to elevated CO2 only occurred in A. acuminatissima or S. hancei in
the first year of the experiment. Previous studies in our experiment
found that elevated CO2 treatment increased soil moisture
remarkably (Deng et al., 2010), which could stimulate soil microbial
processes and result in increases in rates of litter decomposition
and nutrient mineralization (Niklaus et al., 1998).

Our results showed that foliar N:P ratios in the non-N2 fixers
were generally reduced by elevated CO2 although the differences
were not significant in some species. This is due to the stimulation
of P uptake by plants under elevated CO2, which drives lowered
foliar N:P ratios. There is clear evidence that the response ratio (RR)
of foliar N:P ratio was much more related to that of foliar P than to
that of foliar N for all the non-N2 species under elevated CO2

(Fig. 4a, c). On the contrary, as for O. pinnata, its foliar N:P ratio was
little influenced by elevated CO2 due to its up-regulation of both
foliar N and P under elevated CO2. Therefore, the non-N2 fixers
could be favored by elevated CO2 to regulate the balance of foliar N
and P in the P-poor soils to some extent.
4.3. Effects of N addition on foliar N and P stoichiometry

N addition almost had a significantly positive effect on foliar N in
plant species except for S. superba, which was a sensitive species to
acid deposition (Liu et al., 2007). The positive effect was consistent
with other studies (McNulty et al., 2005; Knops et al., 2007; Rowe
et al., 2008; Cui et al., 2010). The increased foliar N with N addi-
tion indicates that plants can use or absorb excess N to serve as
a sink for N in the dry season.

No or a positive response of foliar P to N addition in the tree
species, is somewhat in contradiction to the results of a decline in
foliar P by N addition (Flückiger and Braun, 1998; Nilsson and
Wallander, 2003; Braun et al., 2010), which was due to an inhibi-
tion of mycorrhiza by the N addition or a fixation of P as a result of N
load in acidified soils. N additionwas found to exert a positive effect
on phosphatase activity (Johnson et al., 1999; Pilkington et al.,
2005), which is important for P acquisition (Duff et al., 1994;
Huang et al., 2011). The high phosphatase activity could increase P
acquisition to compensate the dilution of foliar P and prevent future
P deficiency. Consequently, this results in no decline or even an
increase in foliar P concentration in the tree species with the N
addition, especially under elevated CO2.
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The responses of foliar N:P ratios to the N addition in the non-N2
fixers were not obvious during the experiment. It is not supported
by the assumptions that high N deposition was related to high N:P
ratios and the effects would be strengthened by P limitation
(Brouwer et al., 2001; Güsewell, 2004). Our results showed that the
shifts in foliar N:P ratios in response to the N additionwere strongly
determined by foliar P rather than foliar N dynamics (Fig. 4b, d).
Although N addition increased foliar N, N addition did not neces-
sarily induced an increase in foliar N/P ratio as high N availability
could also increase P uptake by plants through increasing P
mineralization. Moreover, the significantly decreased foliar N:P
ratio by the N addition was found in O. pinnata from 2007 to 2009.
There were probably twomechanisms for the results. Firstly, the N2
fixer is adept at acquiring P by investing added N to produce
phosphatase to mineralize P in P-poor soils, which is supported by
the theory of a trade-off between N and P developed by Houlton
et al. (2008). The second mechanism is that faster growing rates
lead to decreased foliar N:P ratios. The previous study in our
experiment showed that the growths of O. pinnata in the CN and
NN treatments were higher than in the other treatments
(Zhao et al., 2011). As an increase in allocation to P-rich ribosomal
RNA is required to support the faster growth rates (Elser et al.,
2000; Sterner and Elser, 2002), there is often a negative relation-
ship between the N:P ratio and growth rate. O. pinnata thus dis-
played lowered foliar N:P ratios in the CN and NN treatments. In
this case, our results indicate that N addition could be conductive to
the N2 fixer in competition for P with the non-N2 fixers under
elevated CO2.

4.4. The interactive effects among CO2 treatment, N treatment and
sampling time on foliar N and P stoichiometry

The interactive effects of CO2 and N treatments on foliar N, foliar
P and foliar N:P ratio varied with the tree species and sampling
time. Elevated CO2 and N addition interact with each other in
stimulating plant growth (Hungate et al., 2003), which could lead
to complex interactions on foliar nutrient concentrations. The
reason for higher foliar N of S. hancei in the CN treatment than in
the CC treatment could be explained by increases in N uptake by the
N addition to offset the growth dilution of N under elevated CO2.
The interactive effects of elevated CO2 and N addition on foliar P
and foliar N:P ratios in A. acuminatissima or foliar N:P ratios in
S. superba were variable at the different sampling times (Table 1).
Thus, it should be cautious to draw any conclusion on the responses
of foliar N, foliar P and foliar N:P ratios to the interaction of elevated
CO2 and N addition with only one sampling campaign. In contrast
with the non-N2 fixers, there was no interactive effect of CO2 and N
treatments on foliar N, foliar P or foliar N:P ratios in O. pinnata. This
was because foliar N, foliar P and foliar N:P ratios showed great
responses to the N addition rather than elevated CO2.

5. Conclusions

Our results showed that high foliar N but low foliar P resulted in
high foliar N:P ratios, indicating that plant growth may be more
limited by P than by N in our region. Foliar N and P and foliar N:P
ratios in the N2 fixer (O. pinnata) were all higher than in the non-N2
fixers (A. acuminatissima, C. hystrix, S. hancei and S. superba).
Elevated CO2 exerted little effect on foliar N due to high soil N
availability in our area, while it increased foliar P and caused low
foliar N:P ratio irrespective of the statistical insignificance in some
species. Foliar N or foliar P in some tree species was increased by
the N addition. The relationships of the RR of foliar N:P ratio to that
of foliar N or foliar P suggest that changes in foliar N:P ratio were
much more driven by foliar P than by foliar N under both elevated
CO2 and N addition. Foliar N:P ratios in the non-N2 fixers were not
affected by the N addition, while those in the N2 fixer were
decreased by the N addition from 2007 to 2009. Our results imply
that compared with the non-N2 fixers, the N2 fixer could have
a competitive advantage for P by N addition under elevated CO2.
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