首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 出版物目录
Hydrological and geocryological response of winter streamflow to climate warming in Northeast China
------------------------------------------------------------------------------------------
出 版 社:Cold Region Science and Technology  
发表时间:2003  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:Liu Jingshi et al.  
点 击 率:388386
------------------------------------------------------------------------------------------
关 键 字(英文):Permafrost; Seasonally frozen ground; Air temperature; Precipitation; Unfrozen water; Discharge; Ground temperature; Active layer  
摘  要(英文):An abrupt warming of regional climate with a 1.3 jC rise in annual air temperature, coupled with an increase of 20–40% in precipitation, has occurred in the 1990s in the permafrost region of Northeast China. The geocryological and hydrological responses of a river basin at high latitude and at altitude with some permafrost are detected based on monthly climatological and streamflow data for 40 years (1958–1998). The variation in depth of the active layer is estimated by an empirical model using annual air temperature, its annual amplitude and the maximum thickness of snow cover.Significant responses of winter streamflows to a 2.4 jC of air temperature warming during December to February were observed. This was especially true for the greatest warming (4.4 jC in February during the 1990s) when runoff increased by 80% in February and by 100% in March from the prior. These responses are caused by a change in depth and temperature of the active layer ranging from 1.5 to 3.0 m in areas where the drainage of the unfrozen water can occur when the ground temperature rises above 0 jC from 0.8 jC in February and March. The depth of the seasonal frost has shrunk by about 30 cm and the active layer thickness increased by about 40 cm in permafrost in the 1990s because of the warmer climate. The hydrological response from winter streamflows in permafrost areas is more significant and quicker than that from the seasonal frost areas. The freezing and drainage of ground water at 2.0–3.0 m deep in March is very sensitive to the climatic warming.  
------------------------------------------------------------------------------------------
Hydrological and geocryological response of winter streamflow to climate warming in Northeast China.pdf
相关文章:
Scaling of root length density of maize in the field profile.
An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field.
Yellow sticky traps for monitoring males and two parasitoids of Oracella acuta (Lobdell) (Homoptera: Pseudococcidae).
Conservation and Sustainable Use of Water Resources in China
On the separate retrieval of soil and vegetation temperatures from ATSR data
Biomass and productivity of natural vegetation on the Tibet and plateau: estimated form combination of field data, county-specific inventories and modeling
The potential information in the temperature difference between shadow and sunlit of surfaces and a new way of retrieving the soil moisture
Predicating unsaturated hydraulic conductivity of soil based on some basic properties
Yellow sticky traps for monitoring males and two parasitoids of Oracella acuta (Lobdell) (Homoptera: Pseudococcidae)
Impacts of Eucalyptus (Eucalyptus exserta) Plantation on Soil Erosion in Guangdong Province, Southern China --A Kinetic Energy Approach.
相关文章分页:  共 201 页 2006 条记录 9 3[11][12][13][14][15][16][17][18][19][20]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |