首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 研究报告目录
Three-decade changes in chemical composition of precipitation in Guangzhou city, southern China:has precipitation recovered from acidification following sulphur dioxide emission control?
------------------------------------------------------------------------------------------
出 版 社:Tellus  
发表时间:2013  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:朱飞飞(3)  
点 击 率:469423
------------------------------------------------------------------------------------------
关 键 字(英文):chemical composition, precipitation, southern China, sulphur and nitrogen deposition, sulphur dioxide emission control  
摘  要(英文):We examined if precipitation had recovered from acidification in Guangzhou, the third biggest city in China,and if sulphur deposition in precipitation had decreased, and to what extent if yes, following abatement strategies in sulphur dioxide (SO2) emission and energy use implemented since 2001. SO2 emissions were decreasing steadily since 2001, but a marked recovery of precipitation acidity occurred only since 2005;precipitation pH values decreased from 4.65 in 2001 to 4.34 in 2005 and then increased to 5.08 in 2010, while in the same period acid rain (pHB5.6) frequency increased from 70% to 81% and then decreased to 48%. During this period, the change in pH value and sulphate concentration more reflected the patterns of SO2 emission at provincial and national scales than at the local scale, suggesting that precipitation chemical composition was largely controlled by the emissions of pollutants from surrounding areas of the study city.Since 2001, sulphate deposition in precipitation decreased significantly (by 40%) but nitrogen deposition remained unaltered. More importantly, the current sulphur (43 kg S ha-1 yr-1 as sulphate) and nitrogen depositions (35 kg N ha-1 yr-1 as ammonium plus nitrate in 2010) were still among the highest in China. These results highlight the fact that ambient sulphur and nitrogen deposition still pose a threat to the health of both terrestrial and aquatic ecosystems. Precipitation may become more acidified in the future because the deposition of alkaline dusts containing calcium is also likely to decrease with stricter SO2 emission control policy and reduced construction activities. Additionally, we recommend that a reduction of emissions of nitrogen and chlorine bearing pollutants is urgently required for complete control on acid deposition.  
------------------------------------------------------------------------------------------
朱飞飞3-2013-Tellus-Three-decade changes in chemical composition of precipitation in Guangzhou city, southern Chinahas precipitation recovered from acidification following sulphur dioxide emission.pdf
相关文章:
HPLC法初步研究维生素C的稳定性.
中国生态网络综合观测场对2002年降雨量蒸发量和水分以及土壤温度的分析
2002年CERN网络跟踪监测红壤丘陵岗坡地气候实况
施肥结构对旱地红壤有机质和物理性质的影响
种植制度对地表径流的影响
四种不同母质发育的红壤水分状况研究
红壤旱地不同种植方式物质循环与调控
大气沉降向林地(小叶栎)输入硫素通量的观测
施肥对红壤性水稻土颗粒有机物形成及团聚体稳定性的影响
土壤有机碳库与土壤结构稳定性关系的研究进展
相关文章分页:  共 201 页 2006 条记录 9 3[51][52][53][54][55][56][57][58][59][60]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |