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What is Ecological Forecasting?
]

» Ecological Forecasting (EF) predicts the effects of changes in the
physical, chemical, and biological environments on ecosystem state
and activity.

» Forecasting differs from prediction in that “a forecast is the best
estimate from a particular method, model, or individual given a set
of specific assumptions. The public and decision makers
understand that a forecast may or may not turn out to be true.”

* Ecological forecasts need to be associated with estimates of
uncertainty or “error bars” so that decision makers using them have
information as to the likelihood of a given forecast.

Clark et al., Science 293: 657-660
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Changing Sea Levels
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Why are Ecological Forecasts important?
]

» Ecological forecasts offer decision makers estimates of
ecological vulnerabilities and potential outcomes given
specific natural events, and/or management or policy
options.

» Ecological forecasting is critical in understanding potential
changes in ecological services, before they happen (early
warning), and are critical in developing strategies to off-set
or avoid catastrophic losses of services

 Goal is to develop management strategies and options to
prevent or reverse declining trends, reduce risks, and to
protect important ecological resources and associated
processes

Foster interdisciplinary activity



Types of Ecological Forecasts

 Vulnerability assessments based on current
conditions ... likelihood of change

 Short-term forecasts/vulnerability assessments
(days/months)

 Longer-term forecasts/vulnerability assessments
(years)



Examples of Vulnerability Assessments and

Forecasts Based on Current Conditions
]

o« Space for Time
e Some Use of Historical Patterns

e Site and Spatially Continuous Data



Genetic Algorithm for Rule-set Prediction
.. Invasive Species e.g.

GARP

LonQg
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Ecological Dimensions: land cover,
temperature, precipitation,

solar radiation, etc. (also used as drivers of
poetential change and vulneranbilities)

Stockwell, D.R.B. and I.R. Noble 1991, and Computers in Simulation. 32:249-254.



Examples of Shorter-term Forecasts
]

 Real-or near-real time data (site or remotely sensed)

« Base biophysical conditions that don’t change (biophysical
characterizations/sensitivity)

 Models relate conditions/species occurrences to important
drivers that change (e.g., air temperature)

« Web-based




Phenology

Changes in vegetation growth patterns, strongly influence by weather/climate
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Customers include farmers, ranchers, health professionals



Longer-term Forecasts and Vulnerability Assessments

e Scenario-based
— Stakeholders
— Models of change in important biophysical

conditions and drivers (economic, population
growth, transportation networks)

« Base biophysical relationships that don’t
change (biophysical
characterizations/sensitivities)

« Models relate conditions/species occurrences
to important drivers that change

« Goal is to develop decision tools and web-
based applications




Projected changes in vegetation distribution
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From data to knowledge/decisions
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Need for a common modeling framework
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Terrestrial Observation and Prediction System
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Access to a variety of observing networks
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Access to a variety of remote sensing platforms
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Ability to integrate a variety of models
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Ability to work across different time and space scales
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TOPS Data & Modeling Software System Architecture
]
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Gridding weather data
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Gridded Weather Surfaces for California
using nearly 700 weather stations daily
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private industry. Rarely integrated
because they are intended for
different audiences. We specialize -
in bringing them together to provide maps come with cross-validation statistics
spatially continuous data.



California : Ecological Daily Nowcast at 1km
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Global NPP Anomalies and Food Security
February 2005

Feb 2005
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What is NPP?
]

NPP is the balance between photosynthesis and respiration by plants

A substantial incentive to understand trends and variability in terrestrial Net Primary
Production, because NPP:

- is the foundation of food, fiber and fuel for human consumption

- determines seasonal and interannual variations in atmospheric CO,

image credit: fao - integrates climatic, ecological, geochemical and human influences on the biosphere



How do we estimate NPP from satellites?

Step 1: Components of the NPP algorithm
convert absorbed radiation to
optimal gross production satellite-derived vegetation properties: Land cover, Leaf Area Index (LAI)
Sten 2 and fraction of absorbed photosynthetically active radiation (FPAR)
ep 2:
downgrade by climate limiting daily climate data: incident radiation (IPAR), minimum and average air
factors to obtain gpp temperatures and humidity
Step 3: fffli\?li)ei)ncies: a biome specific parameterization to convert absorbed PAR
0

subtract respiration to obtain npp
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Greening of the BiosEhere between 1982 and 1999
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Changes in climate between 1982-1999 played a big role

Fotential Climate Limits Temperature
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The observed climatic changes have been mostly in the direction of reducing climatic constraints to plant growth.
Therefore, it seems likely that vegetation responded to such changes positively.
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Nemani et al., Science 300 (2003) But changes in land use could be equally large



Amazon rainforests green up in the sunny dry season
]
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Sensor transition: AVHRR to MODIS

AVHRR (1981-2000), MODIS (2000 onwards)
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Near realtime monitoring of global NPP anomalies

- 0000000000000
Mapping changes in global net primary production

near real-time depiction of the droughts in the Amazon and Horn of Africa, May 2005
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Running et al., 2004, Bioscience, 54:547-560



Ecological Forecasting with economic implications

Annually worth $30 Billion
Intense capital investment
$50-70K per acre to acquire land

Produces nearly 80% of U.S premium wine
Highly sensitive to weather events

In collaboration with Mondavi Wineries



Gragevine Growth Stages and Climate Influences

Dormancy through Bud Break: Effective Chilling
Units (+) (bud hardiness, disease vectors), Hard
Freezes (-), and Rainfall (+)

Floraison Insolation (+), Frosts (-), and Storminess (-)

Veraison: Insolation (+), Heat Accumulation (+), and
Low Temperature Variability (+)

Harvest: Insolation (+), Heat Accumulation (+), Low
Temperature Variability (+), and Rainfall (-)




Satellite data help in vineyard management

Exe in the skx knows a lot more

Multispectral data from IKONOS Map of leaf area index

Seasonal Large spatial variability within a block results in poor wine quality



TOPS Irrigation Scheduling
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Irrigation Forecasts

Irrigation Forecast
for week of July 19-26, 2005

Tokalon Vineyard,
Oakville, CA

CIMIS Measured Weather Data
through July 18, 2005

NWS Forecast Weather Data
July 19-26, 2005

0 30
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Forecast Irrigation (mm)

Seasonal Fully automated web delivery to growers




Strong maritime influence creates ideal wine producing climate

Co-variation of SST and Tave

L SST: 0.729C/47yr, p =0.0030

L T,ye: 1.149C/47yr, p <0.001

OCEAN-ATMOSPHERE-LAND COUPLING
ALONG COASTAL CALIFORNIA

Shift in Pacific climate
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SST from Satellites
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Modeled water stress as a predictor of vintage
1997 moderate water stress, best vintage

Cumulative Water Stress, Veraison to Harvest, 1997-2002
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Predictability on the decadal scales

Pacific Decadal Oscillation
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Long-term viability of premium wine industry: seriously in doubt
]

Change in Extreme Hot Events

« Extremes in temperatures are difficult to

45N] /B _
protect against

35N |

* Hot Events are particularly difficult

per
year
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25N -

« Currently, Napa valley averages about 3-4

o A B Bl days with temperatures above 95F

Change in Extreme Precipitation
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Diffenbaugh et al., PNAS, 102: 15774-15778




What do we need to accelerate ecological forecasting?

 Retaining and upgrading remote sensing platforms that
measure land-surface, freshwater, and ocean conditions

* Improved biophysical data (extent and scale)
« Improved models/linkages among models

* Improved in-situ monitors of biogeochemical
characteristics and processes (NEON)

* Improved compatibility among data (e.g., near-real time
data input into models and integration with other
biophysical data)

« Comprehensive framework and data management
(IWGEO/GEOSS)

 Improved delivery systems to decision makers
(organizations and individuals) ... web-based tools/the

Amedeo Modigliani (1884-1920)
Cypress Trees (1919) Weather Channel

Barnes Foundation



Further Research is reﬁuired to address:

Many forecasting programs rely on rule-based models
developed from space-for-time studies, need more
data

Assumption that past events reflect what will happen in
the future, what about

— Sequence and frequency of
events/drivers/stressors

— Changes in scaling functions

Non-linearity of responses and new thresholds

e ‘\"llfi 1| BE

Gustav Klimt (1862-1918): Der Park (1910)
New York, Sammlung The Museum of Modern
Art



Summary

potential for mimicking the weather services with
ecological forecasts of various lead times.

characterizing and communicating the uncertainty in
ecological forecasts remains a challenge.

producing the forecasts may be the easy part, convincing
the users may take years and careful communication.

Willem de Kooning (1904-1997)
A Tree in Naples (1960)
Museum of Modern Art

more information at: http://ecocast.arc.nasa.gov
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