首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 核心期刊论文目录
Fine root production, turnover, and decomposition in a fast-growth Eucalyptus urophylla plantation in southern China
------------------------------------------------------------------------------------------
出 版 社:J Soils Sediments  
发表时间:2013  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:徐伟强,刘菊秀等  
点 击 率:439137
------------------------------------------------------------------------------------------
关 键 字(英文):Decomposition constant (kvalue),Eucalyptus plantations,Fine roots,Litterbag settlement season,Root diameter class,Soil temperature  
摘  要(英文):Purpose A rapid increase of Eucalyptus plantation area in southern China has raised widespread attention in the field of ecology and forestry. It might be argued that fast-growth Eucalyptus would increase the consumption of resources and thus cause soil degradation. Fine root dynamics could provide insight into nutrient uptake or return. This study therefore focused on fine root production, turnover, and decomposition in a subtropical Eucalyptus urophylla plantation. Materials and methods Sequential coring method was used to estimate fine root production and turnover rate. Root decomposition rate and root nitrogen (N) and phosphorus (P) dynamics were determined using the litterbag method.In this study, roots were divided into three diameter classes: <1, 1–2, and 2–3 mm. We settled litterbags with all three different root diameter classes under the forest floor (0–10cm) in winter, spring, and summer. Results and discussion The total production of fine roots at diameter <2mm was 45.4gm−2 year−1, and its turnover rate was 0.58 year−1. The roots at diameter <1mm showed much greater production or turnover rate than those at diameter 1–2mm. The root mass loss from litterbag across the three diameter classes (<1, 1–2, and 2–3mm) was similar at the beginning period of 180 days, but significantly different later. The decomposition constant (kvalue) of roots estimated by exponential decay model decreased with increasing diameter class. In addition, the season of litterbag settlement also had effects on root mass loss. In root nutrient dynamics, the fractions of initial N immobilized increased with increasing diameter class. Root P at the three diameter classes showed a similar mineralization pattern. Conclusions Our studies on fine root production, turnover,and decomposition give some important insights into nutrient cycling between plant and soil in Eucalyptus plantations.Our results which show that fine roots had relatively low production and turnover rate partly explain the potential soil degradation under the short rotation systems. The variation of root dynamics among different diameter classes suggests that to accurately assess fine root roles, one should consider the effects of root diameter size.  
------------------------------------------------------------------------------------------
徐伟强-2013-J Soils Sediments-Fine root production, turnover, and decomposition in a fast-growth Eucalyptus urophylla plantation in southern China.pdf
相关文章:
Net Global Warming Potential and Greenhouse Gas Intensity Affected by Cropping Sequence and Nitrogen Fertilization
Spatiotemporal characteristics of Precipitation and the extreme events in 1957-2009 on the Loess Plateau of China.
Study of Soil Water Movement and Groundwater Recharge on the Loess Tableland Using Environmental Tracers.
Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Profile of Loess Tableland in China
黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究
黄土高原刺槐林不同组分生态化学计量关系研究
黄土丘陵区不同退耕方式土壤有机碳密度的差异及其空间变化
被重建下煤矿排土场土壤熟化过程中碳储量变化
沙封覆膜种植孔促进盐碱地油葵生长
陕北丘陵沟壑区西瓜套种向日葵栽培技术
相关文章分页:  共 201 页 2006 条记录 9 3[191][192][193][194][195][196][197][198][199][200]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |