首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 核心期刊论文目录
Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region
------------------------------------------------------------------------------------------
出 版 社:Agricultural and Forest Meteorology  
发表时间:2013  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:闫俊华(11)  
点 击 率:457498
------------------------------------------------------------------------------------------
关 键 字(英文):Terrestrial ecosystem,Spatial variation,Carbon exchange fluxes,Climate controlling factors,Carbon source/sink strength,Asian region  
摘  要(英文):Carbon exchange between terrestrial ecosystems and the atmosphere is one of the most important processes in the global carbon cycle. Understanding the spatial variation and controlling factors of carbon exchange fluxes is helpful for accurately predicting and evaluating the global carbon budget. In this study,we quantified the carbon exchange fluxes of different terrestrial ecosystems in the Asian region, and analyzed their spatial variation and controlling factors based on long-term observation data from ChinaFLUX (19 sites) and published data from AsiaFlux (37 sites) and 32 other sites in Asia. The results indicated that the majority of Asian terrestrial ecosystems are currently large carbon sinks. The average net ecosystem production (NEP) values were 325±187, 274±207, 236±260, 89±134gCm−2 yr−1 in cropland, forest,wetland and grassland ecosystems, respectively. The spatial variation of gross primary production (GPP) and ecosystem respiration (Re) were mainly controlled by the mean annual temperature (MAT) and the mean annual precipitation (MAP) in the Asian region. There was a clear linear relationship between GPP and MAT, and a strong sigmoid relationship between GPP and MAP. Re was exponentially related to MAT and linearly related to MAP. Interestingly, those response modes were consistent across different ecosystem types. The different responses of GPP and Re to MAT and MAP determined the spatial variation of NEP. The combined effects of MAT and MAP contributed 85%, 81% and 36% to the spatial variations of GPP, Re and NEP, respectively. Our findings confirmed that the spatial variation of carbon exchange fluxes was mainly controlled by climatic factors, which further strongly supports the use of the climate-driven theory in the Asian region.  
------------------------------------------------------------------------------------------
闫俊华11-2013-AFM-Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region.pdf
相关文章:
鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应
模拟氮沉降增加对南亚热带主要森林土壤动物的早期影响
鼎湖山针阔混交林旱季能量平衡研究
鼎湖山针阔叶混交林地表CH_4通量
鹤山丘陵退化生态系统植被恢复的土壤动物群落结构
南亚热带针阔混交林土壤热通量研究
N沉降增加对森林生态系统地表土壤动物群落的影响
鼎湖山针阔叶混交林生态系统水文过程研究
离子交换树脂袋法研究森林土壤硝态氮及其对氮沉降增加的响应
土壤酸化对温室气体排放影响的培育实验研究
相关文章分页:  共 201 页 2006 条记录 9 3[91][92][93][94][95][96][97][98][99][100]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |