首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 出版物目录
Seasonal responses of soil respiration to elevated CO2and N additionin young subtropical forest ecosystems in southern China
------------------------------------------------------------------------------------------
出 版 社:Ecological Engineering  
发表时间:2013  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:邓琦,周国逸等  
点 击 率:455980
------------------------------------------------------------------------------------------
关 键 字(英文):Elevated CO2,Nitrogen deposition,Soil water feedback,Soil respiration,Soil carbon sequestration,Subtropical forest  
摘  要(英文):tAtmospheric carbon dioxide (CO2) concentration and nitrogen (N) deposition may interactively impactsoil respiration in terrestrial ecosystems. However, the effects of elevated CO2and N deposition on soilrespiration are not fully understood especially in subtropical forest ecosystems in southern China whereambient N deposition is high. In this study, we investigated the seasonal responses of soil respiration toelevated CO2and N addition in young subtropical forest ecosystems in southern China using open-topchambers. Two CO2treatment levels (i.e., ambient CO2and 700 mol mol−1) and two N levels (i.e., ambientand 100 kg N ha−1yr−1) were considered. Forty-eight 1–2 years old seedlings (eight seedlings per each of6 species) were planted in each chamber. In the wet season, soil respiration significantly enhanced underelevated CO2and N addition with no interactive effect. There was not significant relationship betweentreatment-enhanced soil respiration and soil moisture in the wet season, suggesting that increases in soilrespiration resulted in large part from treatment-induced increases in tree growth and C inputs. In the dryseason, soil respiration significantly enhanced under elevated CO2, but did not significantly change underN addition. The N-induced change in soil respiration negatively corrected with soil moisture in the dryseason, indicating that decrease in soil moisture under N addition, together with increase in tree growthinteractively resulted in negligible net change in soil respiration. Our results highlighted the seasonalimportance of environmental controls under elevated CO2and N deposition in the assessment of soil Csequestration potential in subtropical forest ecosystems in southern China.  
------------------------------------------------------------------------------------------
邓琦-2013-Ecological Engineering-Seasonal responses of soil respiration to elevated CO2and N addition in young subtropical forest ecosystems in southern China.pdf
相关文章:
Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain
Simulation of the stomatal conductance of winter wheat in response to light and CO2 changes.
Estimation of annual actual evapotranspiration from nonsaturated land surfaces with conventional meteorological data
Micrometeorological fluxes under the influence of regional and local advection: a revisit
Passive Pan sampler for vadose zone leachate collection
Fluorescent In Situ Hybridization Analysis of Rye Chromatin in the Background of “Xiaoyan No.6”
华北太行山前平原农田土壤养分的空间变异性研究
农田土壤N2O生成与排放影响因素及N2O总量估算的研究
华北太行山前平原土壤肥力状况与玉米产量相关关系的通径分析
太行山山前平原冬小麦生长季硝态氮的淋失研究
相关文章分页:  共 201 页 2006 条记录 9 3[31][32][33][34][35][36][37][38][39][40]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |