首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 出版物目录
Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China
------------------------------------------------------------------------------------------
出 版 社:Global Change Biology  
发表时间:2013  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:闫俊华(15)  
点 击 率:459850
------------------------------------------------------------------------------------------
关 键 字(英文):China, driving force, ecosystem respiration, gross ecosystem productivity, net ecosystem productivity, regional carbon budget, spatial variation, terrestrial ecosystems  
摘  要(英文):Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the longterm observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude.However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature(MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited ‘positive coupling correlation’ in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP.  
------------------------------------------------------------------------------------------
闫俊华15-2013-GCB-Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.pdf
相关文章:
鼎湖山主要森林类型植物胸径生长对氮沉降增加的初期响应
模拟氮沉降增加对南亚热带主要森林土壤动物的早期影响
鼎湖山针阔混交林旱季能量平衡研究
鼎湖山针阔叶混交林地表CH_4通量
鹤山丘陵退化生态系统植被恢复的土壤动物群落结构
南亚热带针阔混交林土壤热通量研究
N沉降增加对森林生态系统地表土壤动物群落的影响
鼎湖山针阔叶混交林生态系统水文过程研究
离子交换树脂袋法研究森林土壤硝态氮及其对氮沉降增加的响应
土壤酸化对温室气体排放影响的培育实验研究
相关文章分页:  共 201 页 2006 条记录 9 3[91][92][93][94][95][96][97][98][99][100]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |