首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 出版物目录
Potential water yield reduction due to forestation across China
------------------------------------------------------------------------------------------
出 版 社:Journal of Hydrology  
发表时间:2006  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:Ge Sun, Zhou Guoyi, Zhiqiang Zhang, Xiaohua Wei, Steven G.McNulty and James M. Vose  
点 击 率:442180
------------------------------------------------------------------------------------------
关 键 字(英文):Forest hydrology;Forestation;Hydrologic impact;Water yield;China  
摘  要(英文):It is widely recognized that vegetation restoration will have positive effects on watershed health by reducing soil erosion and non-point source pollution, enhancing terrestrial and aquatic habitat, and increasing ecosystem carbon sequestration. However, the hydrologic consequences of forestation on degraded lands are not well studied in the forest hydrology community as a whole. China has the largest area of forest plantations in the world now, and the hydrologic consequences of massive forestation are unknown. We applied a simplified hydrological model across the diverse physiographic region to estimate the potential magnitude of annual water yield response to forestation. Our study suggests that the average water yield reduction may vary from about 50 mm/yr (50%) in the semi-arid Loess Plateau region in northern China to about 300 mm/yr (30%) in the tropical southern region. We conclude that forestation in China that often involves a combination of tree planting and engineering (e.g.,terracing) may have even a higher potential to greatly reduce annual water yield in headwater watersheds, especially in the semi-arid Loess Plateau region. However, the forestation area is relatively small for most large basins with mixed landuses in China, thus the regional effects of forestation on water resource management may not be of major concern. Comprehensive science-based evaluation of roles of forests on regulating regional water resources is critical to the current forestation endeavors in China.  
------------------------------------------------------------------------------------------
文件下载:
Potential water yield reduction due to forestation across China.pdf
相关文章:
Land use and topographic position control soil organic C and N accumulation in eroded hilly watershed of the Loess Plateau.
Responses of soil respiration to land use conversions in degraded ecosystem of the semi-arid Loess Plateau.
Influence of soil moisture on litter respiration in the semi-arid Loess Plateau
Does a mixture of old and modern winter wheat cultivars increase yield and water use efficiency in water-limited environments
Attainable Yield Achieved for Plastic Film-mulched Maize in Response to Nitrogen Deficit.
Understanding Dry Matter and Nitrogen Accumulation for High-Yielding Film-Mulched Maize
Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland.
Optimizing Plant Density and Plastic Film Mulch to Increase Maize Productivity and Water-use Efficiency in Semiarid Areas.
Effects of Phosphorus Application in Different Soil Layers on Root Growth, Yield, and Water-Use Efficiency of Winter Wheat Grown Under Semi-Arid Conditions.
The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L) in northwestern China
相关文章分页:  共 201 页 2006 条记录 9 3[191][192][193][194][195][196][197][198][199][200]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |