首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 研究报告目录
Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China
------------------------------------------------------------------------------------------
出 版 社:Global Change Biology  
发表时间:2013  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:闫俊华(15)  
点 击 率:459945
------------------------------------------------------------------------------------------
关 键 字(英文):China, driving force, ecosystem respiration, gross ecosystem productivity, net ecosystem productivity, regional carbon budget, spatial variation, terrestrial ecosystems  
摘  要(英文):Understanding the dynamics and underlying mechanism of carbon exchange between terrestrial ecosystems and the atmosphere is one of the key issues in global change research. In this study, we quantified the carbon fluxes in different terrestrial ecosystems in China, and analyzed their spatial variation and environmental drivers based on the longterm observation data of ChinaFLUX sites and the published data from other flux sites in China. The results indicate that gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem productivity (NEP) of terrestrial ecosystems in China showed a significantly latitudinal pattern, declining linearly with the increase of latitude.However, GEP, ER, and NEP did not present a clear longitudinal pattern. The carbon sink functional areas of terrestrial ecosystems in China were mainly located in the subtropical and temperate forests, coastal wetlands in eastern China, the temperate meadow steppe in the northeast China, and the alpine meadow in eastern edge of Qinghai-Tibetan Plateau. The forest ecosystems had stronger carbon sink than grassland ecosystems. The spatial patterns of GEP and ER in China were mainly determined by mean annual precipitation (MAP) and mean annual temperature(MAT), whereas the spatial variation in NEP was largely explained by MAT. The combined effects of MAT and MAP explained 79%, 62%, and 66% of the spatial variations in GEP, ER, and NEP, respectively. The GEP, ER, and NEP in different ecosystems in China exhibited ‘positive coupling correlation’ in their spatial patterns. Both ER and NEP were significantly correlated with GEP, with 68% of the per-unit GEP contributed to ER and 29% to NEP. MAT and MAP affected the spatial patterns of ER and NEP mainly by their direct effects on the spatial pattern of GEP.  
------------------------------------------------------------------------------------------
闫俊华15-2013-GCB-Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China.pdf
相关文章:
Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition.
Methane uptake responses to nitrogen deposition in three tropical forests in southern China.
Impacts of a large-scale reforestation program on carbon storage dynamics in Guangdong,China.
Foctors influencing leaf litter decomposition an intersite decomposition experiment across China.
Estimating Forest Ecosystem Evapotranspiration at Multiple Temporal Scales with a Dimension Analysis Approach.
Shielding effect of oasis-protection systems composed of various forms of wind break on sand fixation in an arid region: A case study in the Hexi Corridor, northwest China
Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China
Presence of shrubs influences the spatial pattern of soil seed banks in desert herbaceous vegetation
灌溉与施氮对黑河中游新垦沙地农田土壤硝态氮动态的影响
Plant community characteristics and their relationships with climate in the Hexi Corridor region of northwestern China
相关文章分页:  共 201 页 2006 条记录 9 3[161][162][163][164][165][166][167][168][169][170]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |