首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 SCI论文目录
Effects of Phenolics on seedling growth and 15N nitrate absorption of Cunninghamia lanceolata
------------------------------------------------------------------------------------------
出 版 社:Allelopathy Journal  
发表时间:2005年1月  
台  站: 会同森林生态系统定位研究站  
作  者:Chen Longchi  
点 击 率:373602
------------------------------------------------------------------------------------------
关 键 字:Allelochemicals, Chinese fir, -hydroxybenzoic acid, 15N, Phenolics,  
摘  要:Chinese fir (Cunninghamia lanceolata) has replant problem under field conditions and has been attributed to phenolic allelochemicals, which cause its autotoxicity. To determine the mechanism of inhibitory effects of phenolics on Chinese fir, we studied their effects on growth and 15N nitrate absorption by each organ of its seedlings, cultured in pots using 15N-labelled isotope trace technique. The 1×10-3 mol·L-1 vanillic acid and phenolics mixture (0.5×10-3 mol·L-1 vanillic acid and 0.5×10-3 mol·L-1 -hydroxybenzoic acid) significantly inhibited the seedling growth of Chinese fir. Phenolics solution of 1×10-2 mol·L-1 concentration decreased total N content of roots, stems and leaves. 15N derived from the fertilizer (NDFF) in roots, stems and leaves treated with 1 × 10-2 mol·L-1 vanillic acid was 36.1, 42.7 and 38.5% less, respectively, and corresponding values for phenolics mixture at the same concentration were 14.1, 17.2, and 17.0% lower, respectively, compared to control. In contrast, vanillic acid and -hydroxybenzoic acid at 1×10-5 mol·L-1 stimulated the seedling growth, enhanced total 15N content and increased 15N nitrate absorption. These treatments also increased the 15N nitrate distribution in roots and reduced its distribution in stems and leaves. We suggest that accumulated phenolics in soil could inhibit seedling growth through reducing nutrient absorption by Chinese fir and consequently leading to low productivity of replanted Chinese fir.  
关 键 字(英文):Allelochemicals, Chinese fir, -hydroxybenzoic acid, 15N, Phenolics,  
摘  要(英文):Chinese fir (Cunninghamia lanceolata) has replant problem under field conditions and has been attributed to phenolic allelochemicals, which cause its autotoxicity. To determine the mechanism of inhibitory effects of phenolics on Chinese fir, we studied their effects on growth and 15N nitrate absorption by each organ of its seedlings, cultured in pots using 15N-labelled isotope trace technique. The 1×10-3 mol·L-1 vanillic acid and phenolics mixture (0.5×10-3 mol·L-1 vanillic acid and 0.5×10-3 mol·L-1 -hydroxybenzoic acid) significantly inhibited the seedling growth of Chinese fir. Phenolics solution of 1×10-2 mol·L-1 concentration decreased total N content of roots, stems and leaves. 15N derived from the fertilizer (NDFF) in roots, stems and leaves treated with 1 × 10-2 mol·L-1 vanillic acid was 36.1, 42.7 and 38.5% less, respectively, and corresponding values for phenolics mixture at the same concentration were 14.1, 17.2, and 17.0% lower, respectively, compared to control. In contrast, vanillic acid and -hydroxybenzoic acid at 1×10-5 mol·L-1 stimulated the seedling growth, enhanced total 15N content and increased 15N nitrate absorption. These treatments also increased the 15N nitrate distribution in roots and reduced its distribution in stems and leaves. We suggest that accumulated phenolics in soil could inhibit seedling growth through reducing nutrient absorption by Chinese fir and consequently leading to low productivity of replanted Chinese fir.  
------------------------------------------------------------------------------------------
chen.PDF
相关文章:
锐齿栎林非同化器官营养元素含量的分布
中国东北落叶松属植物RBCL基因的序列分析及系统演化
长白山阔叶红松林动态及经营管理模式研究
长白山阔叶林林隙特征及其对树种更新的影响
《联合国气候变化框架公约》谈判中的焦点问题
生态系统管理学的概念框架及其生态学基础
略论生态系统管理的科学问题与发展方向
不同冠层类型的陆地植被蒸发散模型研究进展
长江中游地区退田还湖、生态建设与堤垸经济发展
A Simplified Method to latent and sensible heat using remotely sensed data
相关文章分页:  共 201 页 2006 条记录 9 3[1][2][3][4][5][6][7][8][9][10]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |