首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 核心期刊论文目录
Seasonal responses of soil respiration to elevated CO2and N additionin young subtropical forest ecosystems in southern China
------------------------------------------------------------------------------------------
出 版 社:Ecological Engineering  
发表时间:2013  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:邓琦,周国逸等  
点 击 率:397164
------------------------------------------------------------------------------------------
关 键 字(英文):Elevated CO2,Nitrogen deposition,Soil water feedback,Soil respiration,Soil carbon sequestration,Subtropical forest  
摘  要(英文):tAtmospheric carbon dioxide (CO2) concentration and nitrogen (N) deposition may interactively impactsoil respiration in terrestrial ecosystems. However, the effects of elevated CO2and N deposition on soilrespiration are not fully understood especially in subtropical forest ecosystems in southern China whereambient N deposition is high. In this study, we investigated the seasonal responses of soil respiration toelevated CO2and N addition in young subtropical forest ecosystems in southern China using open-topchambers. Two CO2treatment levels (i.e., ambient CO2and 700 mol mol−1) and two N levels (i.e., ambientand 100 kg N ha−1yr−1) were considered. Forty-eight 1–2 years old seedlings (eight seedlings per each of6 species) were planted in each chamber. In the wet season, soil respiration significantly enhanced underelevated CO2and N addition with no interactive effect. There was not significant relationship betweentreatment-enhanced soil respiration and soil moisture in the wet season, suggesting that increases in soilrespiration resulted in large part from treatment-induced increases in tree growth and C inputs. In the dryseason, soil respiration significantly enhanced under elevated CO2, but did not significantly change underN addition. The N-induced change in soil respiration negatively corrected with soil moisture in the dryseason, indicating that decrease in soil moisture under N addition, together with increase in tree growthinteractively resulted in negligible net change in soil respiration. Our results highlighted the seasonalimportance of environmental controls under elevated CO2and N deposition in the assessment of soil Csequestration potential in subtropical forest ecosystems in southern China.  
------------------------------------------------------------------------------------------
邓琦-2013-Ecological Engineering-Seasonal responses of soil respiration to elevated CO2and N addition in young subtropical forest ecosystems in southern China.pdf
相关文章:
鼎湖山南亚热带常绿阔叶林植被C贮量及其动态特征
数字卫星图像分类和航空相片目视判读所确定的地面覆盖和土地利用类型面积的初步比较-以长江三峡地区为例
近17年城镇用地扩展对粮食生产影响的定量评估研究——以江苏省常熟市为例
江苏省金坛市土壤肥力的时空变化特征
Effects of Phenolics on seedling growth and 15N nitrate absorption of Cunninghamia lanceolata
Ecohydrological change mechanism of a rainfed revegetation ecosystem at southeastern edge of Tengger desert, Northwest China.
Long-Term Ecosystem Effects of Sand-Binding Vegetation in the Tengger Desert, Northern China.
Association between Vegetation Patterns and Soil Properties in the Southeastern Tengger Desert China.
Long-term effects of revegetation on soil water content of sand dunes in arid region of Northern China
Ecological Adaptation Strategies of Annual Plants in Artificial Vegetation-Stabilized Sand Dune in Shapotou Region.
相关文章分页:  共 201 页 2006 条记录 9 3[61][62][63][64][65][66][67][68][69][70]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |