首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 核心期刊论文目录
Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China
------------------------------------------------------------------------------------------
出 版 社:Global Change Biology, doi: 10.1111/j.1365-2486.01109.x  
发表时间:2006  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:Tang Xuli,Liu Shuguang,Zhou Guoyi,Zhang Deqiang,Zhou Cunyu  
点 击 率:307732
------------------------------------------------------------------------------------------
关 键 字(英文):Dinghushan Nature Reserve, GHG fluxes, seasonal difference, soil-atmospheric exchange,succession stage, successional forests  
摘  要(英文):The magnitude, temporal, and spatial patterns of soil-atmospheric greenhouse gas(hereafter referred to as GHG) exchanges in forests near the Tropic of Cancer are still highly uncertain. To contribute towards an improvement of actual estimates, soil-atmospheric CO2, CH4, and N2O fluxes were measured in three successional subtropical forests at the Dinghushan Nature Reserve (hereafter referred to as DNR) in southern China. Soils in DNR forests behaved as N2O sources and CH4 sinks. Annual mean CO2,N2O, and CH4 fluxes (mean±SD) were 7.7±4.6MgCO2-C ha-1 yr-1, 3.2±1.2 kg N2ONha-1 yr-1, and 3.4±0.9 kgCH4-C ha-1 yr-1, respectively. The climate was warm and wet from April through September 2003 (the hot-humid season) and became cool and dry from October 2003 through March 2004 (the cool-dry season). The seasonality of soil CO2 emission coincided with the seasonal climate pattern, with high CO2 emission rates in the hot-humid season and low rates in the cool-dry season. In contrast, seasonal patterns of CH4 and N2O fluxes were not clear, although higher CH4 uptake rates were often observed in the cool-dry season and higher N2O emission rates were often observed in the hot-humid season. GHG fluxes measured at these three sites showed a clear increasing trend with the progressive succession. If this trend is representative at the regional scale, CO2 and N2O emissions and CH4 uptake in southern China may increase in the future in light of the projected change in forest age structure. Removal of surface litter reduced soil CO2 effluxes by 17–44% in the three forests but had no significant effect on CH4 absorption and N2O emission rates. This suggests that microbial CH4 uptake and N2O production was mainly related to the mineral soil rather than in the surface litter layer.  
------------------------------------------------------------------------------------------
Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China_2006Tang_GCB.pdf
相关文章:
土壤微生物对大气CO2浓度升高的响应
Sensitivity analyses of woody species exposed to air pollution based on ecophysiological measurement.
土壤条件与植物响应
鼎湖山马尾松、荷木混交林生态系统碳素积累和分配特征
大气SO2和HF对植物生理生态指标的影响
桉树人工林冠层气象因子对雨季土壤水分的影响
广东园林绿化植物对大气污染的反应及污染物在叶片的积累
大气污染对38种木本植物的伤害特征
人为干扰对鼎湖山马尾松林种群动态的影响
木本植物对高氮沉降的生理生态响应
相关文章分页:  共 201 页 2006 条记录 9 3[21][22][23][24][25][26][27][28][29][30]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |