首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 出版物目录
Hydrological and geocryological response of winter streamflow to climate warming in Northeast China
------------------------------------------------------------------------------------------
出 版 社:Cold Region Science and Technology  
发表时间:2003  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:Liu Jingshi et al.  
点 击 率:328561
------------------------------------------------------------------------------------------
关 键 字(英文):Permafrost; Seasonally frozen ground; Air temperature; Precipitation; Unfrozen water; Discharge; Ground temperature; Active layer  
摘  要(英文):An abrupt warming of regional climate with a 1.3 jC rise in annual air temperature, coupled with an increase of 20–40% in precipitation, has occurred in the 1990s in the permafrost region of Northeast China. The geocryological and hydrological responses of a river basin at high latitude and at altitude with some permafrost are detected based on monthly climatological and streamflow data for 40 years (1958–1998). The variation in depth of the active layer is estimated by an empirical model using annual air temperature, its annual amplitude and the maximum thickness of snow cover.Significant responses of winter streamflows to a 2.4 jC of air temperature warming during December to February were observed. This was especially true for the greatest warming (4.4 jC in February during the 1990s) when runoff increased by 80% in February and by 100% in March from the prior. These responses are caused by a change in depth and temperature of the active layer ranging from 1.5 to 3.0 m in areas where the drainage of the unfrozen water can occur when the ground temperature rises above 0 jC from 0.8 jC in February and March. The depth of the seasonal frost has shrunk by about 30 cm and the active layer thickness increased by about 40 cm in permafrost in the 1990s because of the warmer climate. The hydrological response from winter streamflows in permafrost areas is more significant and quicker than that from the seasonal frost areas. The freezing and drainage of ground water at 2.0–3.0 m deep in March is very sensitive to the climatic warming.  
------------------------------------------------------------------------------------------
Hydrological and geocryological response of winter streamflow to climate warming in Northeast China.pdf
相关文章:
The combination of localized phosphorus and water supply indicates a high potential for savings of irrigation water and phosphorus fertilizer.
Ecological Footprint Analysis Applied to a Coal-Consumption County in China
Higher species diversity occurs in more fertile habitats without fertilizer disturbance in an alpine natural grassland community.
Soil-hydrological properties response to grazing exclusion in a steppe grassland of the Loess Plateau.
Effects of time-since-fire on vegetation composition and structures in semi-arid perennial grassland on the Loess Plateau, China.
A new framework for multi-site weather generator: a two-stage model combining a parametric method with a distribution-free shuffle procedure.
Brissette F, Chen J. Assessing the applicability of six precipitation probability distribution models on the Loess Plateau of China.
Aggregate-Associated Carbon and Nitrogen Affected by Residue Placement, Crop Species, and Nitrogen Fertilization
Soil Carbon and Nitrogen Fractions and Crop Yields Affected by Residue Placement and Crop Types
Net Global Warming Potential and Greenhouse Gas Intensity Influenced by Irrigation, Tillage, Crop Rotation, and Nitrogen Fertilization
相关文章分页:  共 201 页 2006 条记录 9 3[191][192][193][194][195][196][197][198][199][200]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |