首 页 网络介绍 CERN新闻 规章制度 在研项目 论文与出版物 学术动态 生态知识 人员招聘 人员组成 English

    论文与出版物
   SCI论文目录
   SCI论文全文(PDF文件)
   核心期刊论文目录
   出版物目录
   研究报告目录

 出版物目录
Elevated co2 stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis
------------------------------------------------------------------------------------------
出 版 社:Ecology  
发表时间:2006  
台  站: 鼎湖山森林生态系统定位研究站  
作  者:Luo Yiqi, Hui Dafeng,Zhang Deqing  
点 击 率:403607
------------------------------------------------------------------------------------------
关 键 字(英文):carbon sequestration; ecosystem development; global change; meta-analysis; nitrogen;stoichiometry.  
摘  要(英文):The capability of terrestrial ecosystems to sequester carbon (C) plays a critical role in regulating future climatic change yet depends on nitrogen (N) availability. To predict long-term ecosystem C storage, it is essential to examine whether soil N becomes progressively limiting as C and N are sequestered in long-lived plant biomass and soil organic matter. A critical parameter to indicate the long-term progressive N limitation (PNL)is net change in ecosystem N content in association with C accumulation in plant and soil pools under elevated CO2. We compiled data from 104 published papers that study C and N dynamics at ambient and elevated CO2. The compiled database contains C contents, N contents, and C:N ratio in various plant and soil pools, and root:shoot ratio. Averaged C and N pool sizes in plant and soil all significantly increase at elevated CO2 in comparison to those at ambient CO2, ranging from a 5% increase in shoot N content to a 32% increase in root C content. The C and N contents in litter pools are consistently higher in elevated than ambient CO2 among all the surveyed studies whereas C and N contents in the other pools increase in some studies and decrease in other studies. The high variability in CO2-induced changes in C and N pool sizes results from diverse responses of various C and N processes to elevated CO2. Averaged C:N ratios are higher by 3% in litter and soil pools and 11% in root and shoot pools at elevated relative to ambient CO2. Elevated CO2 slightly increases root:shoot ratio. The net N accumulation in plant and soil pools at least helps prevent complete down-regulation of, and likely supports, long-term CO2 stimulation of C sequestration. The concomitant C and N accumulations in response to rising atmospheric CO2 may reflect intrinsic nature of ecosystem development as revealed before by studies of succession over hundreds to millions of years.  
------------------------------------------------------------------------------------------
Elevated co2 stimulates net accumulations of carbon and nitrogen in land ecosystems:A meta-analysis.pdf
相关文章:
Anning. Ammonia Volatilization and Denitrification Loss from Irrigated Maize-wheat Rotation Field in the North China Plain
Exploring soil layers and water tables with Ground-penitrating Radar.
Study on application of vetiver eco-engineering technique for stabilization and revegetation of karst stony slopes
Revegetation of quarry using a complex vetiver eco-engineering technique
Revegetation of quarry using a complex vetiver eco-engineering technique
A preliminary report on tolerance of vetiver to submergence
Study on screening for better ecotypes of vetiver grass
How to initiate the private sector to develop the vetiver industry with special reference to China
Ecological effectiveness of vetiver constructed wetlands in treating oil-refined wastewater
Application of the Vetiver System in the reclamation of degraded land
相关文章分页:  共 201 页 2006 条记录 9 3[11][12][13][14][15][16][17][18][19][20]4 :

[关闭窗口]
中国生态系统研究网络 版权所有
| 网络介绍 | 联系方式 | 网站地图 |